An Integrated of Decision Making and Motion Planning Framework for Enhanced Oscillation-Free Capability

运动规划 计算机科学 弹道 运动(物理) 控制(管理) 工程类 控制理论(社会学) 机器人 控制工程 人工智能 天文 物理
作者
Zhuoren Li,Jia Hu,Bo Leng,Lu Xiong,Zhiqiang Fu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (6): 5718-5732 被引量:37
标识
DOI:10.1109/tits.2023.3332655
摘要

Autonomous driving requires efficient and safe decision making and motion planning in dynamic and uncertain environments. Future movement of surrounding vehicles is often difficult to represent. Besides, most existing studies consider decision making and planning/control separately. Both them may lead to the oscillation and unsafe for autonomous driving. This paper proposes an integrated framework of decision making and motion planning with oscillation-free capability. The proposed approach overcomes the shortcomings of autonomous driving for lane change/keeping maneuvers and is able to: i) make oscillation-free behavior decisions given biased prediction; ii) cut through in the traffic efficiently and safely when being in squeezed; iii) accelerate computation efficiency by building a state transfer model based on prediction uncertainty; iv) reduce the dissonance between decision-making and motion planning. A belief decision planner is designed with the uncertainty of the prediction trajectories. Lateral and longitudinal drivable corridors including the reference state and the related boundary constraints are built, which provide better suited information for planning to solve the optimal motion sequence more quickly and stably, and improve its consistency with decision module. Finally, the problem is formulated as an optimal control problem considering the vehicle dynamics and some soft constraints and the motion trajectory is solved by OSQP. Simulation and experimental tests are implemented to evaluate the feasibility and effectiveness of the proposed approach. Test results show that the integrated approach can make proper, safe and continuous decision and planning for autonomous vehicles and the calculation time is very low.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助张萌采纳,获得10
刚刚
魏泽旭发布了新的文献求助10
1秒前
bkagyin应助很美味采纳,获得10
2秒前
英俊鼠标完成签到 ,获得积分10
2秒前
自然垣完成签到,获得积分20
2秒前
芙蓉王源发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
端庄的夜蕾完成签到,获得积分10
3秒前
顾矜应助小巧的断缘采纳,获得10
3秒前
半岛铁盒发布了新的文献求助10
4秒前
开心超人完成签到,获得积分10
4秒前
牧听莲发布了新的文献求助10
4秒前
4秒前
爆米花应助韓大侠采纳,获得10
4秒前
蘑菇完成签到 ,获得积分10
5秒前
小马甲应助明理珩采纳,获得10
5秒前
量子星尘发布了新的文献求助10
7秒前
单薄雪巧发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
自然垣发布了新的文献求助10
8秒前
小王发布了新的文献求助10
8秒前
8秒前
RQ发布了新的文献求助10
8秒前
高大的羽毛应助ark861023采纳,获得10
9秒前
情怀应助牧听莲采纳,获得10
9秒前
9秒前
星辰大海应助主手的麻衣采纳,获得10
9秒前
小宇完成签到 ,获得积分10
9秒前
10秒前
10秒前
芝士发布了新的文献求助10
11秒前
咋还完成签到,获得积分10
11秒前
大宝君应助维多利亚采纳,获得30
11秒前
jx完成签到 ,获得积分20
11秒前
11秒前
Rollei应助mmol采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719543
求助须知:如何正确求助?哪些是违规求助? 5256663
关于积分的说明 15288927
捐赠科研通 4869380
什么是DOI,文献DOI怎么找? 2614754
邀请新用户注册赠送积分活动 1564750
关于科研通互助平台的介绍 1521972