MRI-based Deep Learning Assessment of Amyloid, Tau, and Neurodegeneration Biomarker Status across the Alzheimer Disease Spectrum

医学 生物标志物 阿尔茨海默病 淀粉样蛋白(真菌学) 神经退行性变 神经科学 疾病 病理 生物 生物化学 化学
作者
Christopher O. Lew,Longfei Zhou,Maciej A. Mazurowski,P. Murali Doraiswamy,Jeffrey R. Petrella
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (1) 被引量:8
标识
DOI:10.1148/radiol.222441
摘要

Background PET can be used for amyloid-tau-neurodegeneration (ATN) classification in Alzheimer disease, but incurs considerable cost and exposure to ionizing radiation. MRI currently has limited use in characterizing ATN status. Deep learning techniques can detect complex patterns in MRI data and have potential for noninvasive characterization of ATN status. Purpose To use deep learning to predict PET-determined ATN biomarker status using MRI and readily available diagnostic data. Materials and Methods MRI and PET data were retrospectively collected from the Alzheimer's Disease Imaging Initiative. PET scans were paired with MRI scans acquired within 30 days, from August 2005 to September 2020. Pairs were randomly split into subsets as follows: 70% for training, 10% for validation, and 20% for final testing. A bimodal Gaussian mixture model was used to threshold PET scans into positive and negative labels. MRI data were fed into a convolutional neural network to generate imaging features. These features were combined in a logistic regression model with patient demographics, APOE gene status, cognitive scores, hippocampal volumes, and clinical diagnoses to classify each ATN biomarker component as positive or negative. Area under the receiver operating characteristic curve (AUC) analysis was used for model evaluation. Feature importance was derived from model coefficients and gradients. Results There were 2099 amyloid (mean patient age, 75 years ± 10 [SD]; 1110 male), 557 tau (mean patient age, 75 years ± 7; 280 male), and 2768 FDG PET (mean patient age, 75 years ± 7; 1645 male) and MRI pairs. Model AUCs for the test set were as follows: amyloid, 0.79 (95% CI: 0.74, 0.83); tau, 0.73 (95% CI: 0.58, 0.86); and neurodegeneration, 0.86 (95% CI: 0.83, 0.89). Within the networks, high gradients were present in key temporal, parietal, frontal, and occipital cortical regions. Model coefficients for cognitive scores, hippocampal volumes, and APOE status were highest. Conclusion A deep learning algorithm predicted each component of PET-determined ATN status with acceptable to excellent efficacy using MRI and other available diagnostic data. © RSNA, 2023 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
健忘捕完成签到,获得积分10
1秒前
yx_cheng应助罗浩采纳,获得30
2秒前
机智谷蕊发布了新的文献求助10
2秒前
明天见发布了新的文献求助10
2秒前
afengya发布了新的文献求助10
3秒前
4秒前
5秒前
天意如此完成签到,获得积分10
5秒前
土豪的大树完成签到,获得积分10
5秒前
三千港完成签到,获得积分10
6秒前
fuxiaobao发布了新的文献求助10
6秒前
6秒前
稀里糊涂完成签到 ,获得积分10
7秒前
汉堡包应助yyyy采纳,获得10
8秒前
多情高丽完成签到 ,获得积分10
8秒前
刺猬崔发布了新的文献求助20
9秒前
mashichuang发布了新的文献求助10
10秒前
正直冬日发布了新的文献求助10
10秒前
hahahaman完成签到,获得积分10
11秒前
Yau完成签到,获得积分10
13秒前
mawenxing完成签到,获得积分10
13秒前
hzNB完成签到,获得积分10
14秒前
热心的诗双完成签到 ,获得积分10
15秒前
一诺相许完成签到 ,获得积分10
15秒前
15秒前
摩登兄弟完成签到,获得积分10
16秒前
li发布了新的文献求助10
17秒前
17秒前
ll发布了新的文献求助10
18秒前
烟花应助jackwang采纳,获得10
18秒前
科研通AI2S应助人青采纳,获得10
18秒前
kayaaa完成签到,获得积分10
19秒前
19秒前
可爱的函函应助migratorybird采纳,获得10
20秒前
20秒前
KIORking完成签到,获得积分10
22秒前
kayaaa发布了新的文献求助10
24秒前
Rondab应助无私的芹采纳,获得30
25秒前
Liufgui应助mogekkko采纳,获得50
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997769
求助须知:如何正确求助?哪些是违规求助? 3537294
关于积分的说明 11271231
捐赠科研通 3276455
什么是DOI,文献DOI怎么找? 1807040
邀请新用户注册赠送积分活动 883639
科研通“疑难数据库(出版商)”最低求助积分说明 809982