MRI-based Deep Learning Assessment of Amyloid, Tau, and Neurodegeneration Biomarker Status across the Alzheimer Disease Spectrum

医学 生物标志物 阿尔茨海默病 淀粉样蛋白(真菌学) 神经退行性变 神经科学 疾病 病理 生物 生物化学 化学
作者
Christopher O. Lew,Longfei Zhou,Maciej A. Mazurowski,P. Murali Doraiswamy,Jeffrey R. Petrella
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (1): e222441-e222441 被引量:19
标识
DOI:10.1148/radiol.222441
摘要

Background PET can be used for amyloid-tau-neurodegeneration (ATN) classification in Alzheimer disease, but incurs considerable cost and exposure to ionizing radiation. MRI currently has limited use in characterizing ATN status. Deep learning techniques can detect complex patterns in MRI data and have potential for noninvasive characterization of ATN status. Purpose To use deep learning to predict PET-determined ATN biomarker status using MRI and readily available diagnostic data. Materials and Methods MRI and PET data were retrospectively collected from the Alzheimer's Disease Imaging Initiative. PET scans were paired with MRI scans acquired within 30 days, from August 2005 to September 2020. Pairs were randomly split into subsets as follows: 70% for training, 10% for validation, and 20% for final testing. A bimodal Gaussian mixture model was used to threshold PET scans into positive and negative labels. MRI data were fed into a convolutional neural network to generate imaging features. These features were combined in a logistic regression model with patient demographics, APOE gene status, cognitive scores, hippocampal volumes, and clinical diagnoses to classify each ATN biomarker component as positive or negative. Area under the receiver operating characteristic curve (AUC) analysis was used for model evaluation. Feature importance was derived from model coefficients and gradients. Results There were 2099 amyloid (mean patient age, 75 years ± 10 [SD]; 1110 male), 557 tau (mean patient age, 75 years ± 7; 280 male), and 2768 FDG PET (mean patient age, 75 years ± 7; 1645 male) and MRI pairs. Model AUCs for the test set were as follows: amyloid, 0.79 (95% CI: 0.74, 0.83); tau, 0.73 (95% CI: 0.58, 0.86); and neurodegeneration, 0.86 (95% CI: 0.83, 0.89). Within the networks, high gradients were present in key temporal, parietal, frontal, and occipital cortical regions. Model coefficients for cognitive scores, hippocampal volumes, and APOE status were highest. Conclusion A deep learning algorithm predicted each component of PET-determined ATN status with acceptable to excellent efficacy using MRI and other available diagnostic data. © RSNA, 2023 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
heitao完成签到,获得积分20
1秒前
1秒前
1秒前
2秒前
2秒前
AAA电材哥发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
风清扬发布了新的文献求助10
3秒前
搬砖人完成签到,获得积分10
3秒前
田様应助东方雨落采纳,获得10
3秒前
3秒前
4秒前
欣慰可愁发布了新的文献求助10
5秒前
脑洞疼应助认真的自行车采纳,获得10
5秒前
包容的鞋垫完成签到,获得积分10
5秒前
6秒前
6秒前
在水一方应助晓风残月采纳,获得10
6秒前
yessy发布了新的文献求助10
6秒前
6秒前
星辰大海应助lucky采纳,获得10
6秒前
科研通AI6应助结实的栾采纳,获得10
6秒前
6秒前
一一完成签到,获得积分10
7秒前
cnmkyt发布了新的文献求助10
7秒前
panyuz发布了新的文献求助30
7秒前
7秒前
WEI6发布了新的文献求助10
7秒前
FashionBoy应助HUYAOWEI采纳,获得10
8秒前
鲤鱼豪完成签到,获得积分10
8秒前
CipherSage应助开朗发卡采纳,获得10
8秒前
鹿雅彤发布了新的文献求助10
8秒前
科研通AI6应助自然的盈采纳,获得10
8秒前
念念完成签到,获得积分10
9秒前
滴滴滴发布了新的文献求助10
9秒前
9秒前
卫三发布了新的文献求助10
10秒前
小科发布了新的文献求助10
10秒前
白羊完成签到,获得积分10
10秒前
GCXH完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Lectures in probability theory and mathematical statistics - 3rd Edition 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597483
求助须知:如何正确求助?哪些是违规求助? 4682912
关于积分的说明 14827567
捐赠科研通 4660738
什么是DOI,文献DOI怎么找? 2536633
邀请新用户注册赠送积分活动 1504244
关于科研通互助平台的介绍 1470182