MRI-based Deep Learning Assessment of Amyloid, Tau, and Neurodegeneration Biomarker Status across the Alzheimer Disease Spectrum

医学 生物标志物 阿尔茨海默病 淀粉样蛋白(真菌学) 神经退行性变 神经科学 疾病 病理 生物 生物化学 化学
作者
Christopher O. Lew,Longfei Zhou,Maciej A. Mazurowski,P. Murali Doraiswamy,Jeffrey R. Petrella
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (1) 被引量:9
标识
DOI:10.1148/radiol.222441
摘要

Background PET can be used for amyloid-tau-neurodegeneration (ATN) classification in Alzheimer disease, but incurs considerable cost and exposure to ionizing radiation. MRI currently has limited use in characterizing ATN status. Deep learning techniques can detect complex patterns in MRI data and have potential for noninvasive characterization of ATN status. Purpose To use deep learning to predict PET-determined ATN biomarker status using MRI and readily available diagnostic data. Materials and Methods MRI and PET data were retrospectively collected from the Alzheimer's Disease Imaging Initiative. PET scans were paired with MRI scans acquired within 30 days, from August 2005 to September 2020. Pairs were randomly split into subsets as follows: 70% for training, 10% for validation, and 20% for final testing. A bimodal Gaussian mixture model was used to threshold PET scans into positive and negative labels. MRI data were fed into a convolutional neural network to generate imaging features. These features were combined in a logistic regression model with patient demographics, APOE gene status, cognitive scores, hippocampal volumes, and clinical diagnoses to classify each ATN biomarker component as positive or negative. Area under the receiver operating characteristic curve (AUC) analysis was used for model evaluation. Feature importance was derived from model coefficients and gradients. Results There were 2099 amyloid (mean patient age, 75 years ± 10 [SD]; 1110 male), 557 tau (mean patient age, 75 years ± 7; 280 male), and 2768 FDG PET (mean patient age, 75 years ± 7; 1645 male) and MRI pairs. Model AUCs for the test set were as follows: amyloid, 0.79 (95% CI: 0.74, 0.83); tau, 0.73 (95% CI: 0.58, 0.86); and neurodegeneration, 0.86 (95% CI: 0.83, 0.89). Within the networks, high gradients were present in key temporal, parietal, frontal, and occipital cortical regions. Model coefficients for cognitive scores, hippocampal volumes, and APOE status were highest. Conclusion A deep learning algorithm predicted each component of PET-determined ATN status with acceptable to excellent efficacy using MRI and other available diagnostic data. © RSNA, 2023 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ntrip完成签到,获得积分10
刚刚
1秒前
传奇3应助ldgsd采纳,获得10
1秒前
橙酒发布了新的文献求助10
2秒前
普外科老白完成签到,获得积分10
5秒前
欣慰立轩发布了新的文献求助10
5秒前
浮游应助彤彤采纳,获得10
6秒前
土豆淀粉发布了新的文献求助10
6秒前
小熙完成签到 ,获得积分10
9秒前
9秒前
得己完成签到 ,获得积分10
9秒前
10秒前
忆落完成签到 ,获得积分10
12秒前
士兵许三多完成签到,获得积分10
13秒前
SciGPT应助cczz采纳,获得10
14秒前
机智毛豆完成签到,获得积分10
14秒前
周花花完成签到 ,获得积分10
17秒前
liars完成签到 ,获得积分10
19秒前
20秒前
研友_VZG7GZ应助纯真忆安采纳,获得10
20秒前
开放幻丝完成签到,获得积分10
21秒前
LILI完成签到 ,获得积分10
22秒前
巧兮完成签到 ,获得积分10
23秒前
丰富烧鹅完成签到,获得积分10
24秒前
饱满一手完成签到 ,获得积分10
24秒前
萨伊普完成签到,获得积分20
25秒前
cczz发布了新的文献求助10
26秒前
Akim应助加油搬砖采纳,获得10
27秒前
blink_gmx完成签到,获得积分10
28秒前
燕子完成签到,获得积分10
28秒前
科研老兵完成签到,获得积分10
29秒前
子木完成签到 ,获得积分10
31秒前
2589完成签到,获得积分10
31秒前
山鲁佐德完成签到,获得积分10
31秒前
一只小小鸟完成签到 ,获得积分10
31秒前
33秒前
脑洞疼应助一个小胖子采纳,获得10
35秒前
zombleq完成签到 ,获得积分10
36秒前
lalala发布了新的文献求助10
37秒前
MoodMeed完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304775
求助须知:如何正确求助?哪些是违规求助? 4451039
关于积分的说明 13850712
捐赠科研通 4338311
什么是DOI,文献DOI怎么找? 2381834
邀请新用户注册赠送积分活动 1376922
关于科研通互助平台的介绍 1344282