MRI-based Deep Learning Assessment of Amyloid, Tau, and Neurodegeneration Biomarker Status across the Alzheimer Disease Spectrum

医学 生物标志物 阿尔茨海默病 淀粉样蛋白(真菌学) 神经退行性变 神经科学 疾病 病理 生物 生物化学 化学
作者
Christopher O. Lew,Longfei Zhou,Maciej A. Mazurowski,P. Murali Doraiswamy,Jeffrey R. Petrella
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (1) 被引量:9
标识
DOI:10.1148/radiol.222441
摘要

Background PET can be used for amyloid-tau-neurodegeneration (ATN) classification in Alzheimer disease, but incurs considerable cost and exposure to ionizing radiation. MRI currently has limited use in characterizing ATN status. Deep learning techniques can detect complex patterns in MRI data and have potential for noninvasive characterization of ATN status. Purpose To use deep learning to predict PET-determined ATN biomarker status using MRI and readily available diagnostic data. Materials and Methods MRI and PET data were retrospectively collected from the Alzheimer's Disease Imaging Initiative. PET scans were paired with MRI scans acquired within 30 days, from August 2005 to September 2020. Pairs were randomly split into subsets as follows: 70% for training, 10% for validation, and 20% for final testing. A bimodal Gaussian mixture model was used to threshold PET scans into positive and negative labels. MRI data were fed into a convolutional neural network to generate imaging features. These features were combined in a logistic regression model with patient demographics, APOE gene status, cognitive scores, hippocampal volumes, and clinical diagnoses to classify each ATN biomarker component as positive or negative. Area under the receiver operating characteristic curve (AUC) analysis was used for model evaluation. Feature importance was derived from model coefficients and gradients. Results There were 2099 amyloid (mean patient age, 75 years ± 10 [SD]; 1110 male), 557 tau (mean patient age, 75 years ± 7; 280 male), and 2768 FDG PET (mean patient age, 75 years ± 7; 1645 male) and MRI pairs. Model AUCs for the test set were as follows: amyloid, 0.79 (95% CI: 0.74, 0.83); tau, 0.73 (95% CI: 0.58, 0.86); and neurodegeneration, 0.86 (95% CI: 0.83, 0.89). Within the networks, high gradients were present in key temporal, parietal, frontal, and occipital cortical regions. Model coefficients for cognitive scores, hippocampal volumes, and APOE status were highest. Conclusion A deep learning algorithm predicted each component of PET-determined ATN status with acceptable to excellent efficacy using MRI and other available diagnostic data. © RSNA, 2023 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一路向北发布了新的文献求助10
刚刚
1秒前
汉堡包应助烽火残心采纳,获得10
1秒前
思源应助lelelele采纳,获得10
1秒前
从容以山发布了新的文献求助10
2秒前
2秒前
英姑应助njuxyh采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
四月一日完成签到,获得积分10
4秒前
aa发布了新的文献求助20
4秒前
4秒前
5秒前
怡然的扬发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助20
5秒前
5秒前
领导范儿应助chj采纳,获得10
5秒前
霸天虎发布了新的文献求助30
6秒前
6秒前
kr发布了新的文献求助10
7秒前
小二郎应助固的曼采纳,获得10
7秒前
弱水举报尘世迷途小书童求助涉嫌违规
7秒前
漂亮平蓝完成签到,获得积分20
7秒前
Akim应助nn采纳,获得10
8秒前
hihihihihi发布了新的文献求助10
8秒前
李健的小迷弟应助yly采纳,获得10
9秒前
Huskar完成签到 ,获得积分10
9秒前
可爱deyi发布了新的文献求助10
9秒前
Moxley发布了新的文献求助10
10秒前
木心长完成签到,获得积分10
10秒前
科研通AI6应助龙骑采纳,获得10
11秒前
ZHH发布了新的文献求助10
11秒前
天天快乐应助量子星尘采纳,获得150
11秒前
飘逸语琴发布了新的文献求助10
12秒前
怡然的扬完成签到,获得积分10
12秒前
Bab完成签到,获得积分10
13秒前
徐x完成签到,获得积分20
14秒前
浮游应助果奶绝甜采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4866290
求助须知:如何正确求助?哪些是违规求助? 4158813
关于积分的说明 12895255
捐赠科研通 3912534
什么是DOI,文献DOI怎么找? 2148926
邀请新用户注册赠送积分活动 1167528
关于科研通互助平台的介绍 1069835