亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MRI-based Deep Learning Assessment of Amyloid, Tau, and Neurodegeneration Biomarker Status across the Alzheimer Disease Spectrum

医学 生物标志物 阿尔茨海默病 淀粉样蛋白(真菌学) 神经退行性变 神经科学 疾病 病理 生物 生物化学 化学
作者
Christopher O. Lew,Longfei Zhou,Maciej A. Mazurowski,P. Murali Doraiswamy,Jeffrey R. Petrella
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (1) 被引量:9
标识
DOI:10.1148/radiol.222441
摘要

Background PET can be used for amyloid-tau-neurodegeneration (ATN) classification in Alzheimer disease, but incurs considerable cost and exposure to ionizing radiation. MRI currently has limited use in characterizing ATN status. Deep learning techniques can detect complex patterns in MRI data and have potential for noninvasive characterization of ATN status. Purpose To use deep learning to predict PET-determined ATN biomarker status using MRI and readily available diagnostic data. Materials and Methods MRI and PET data were retrospectively collected from the Alzheimer's Disease Imaging Initiative. PET scans were paired with MRI scans acquired within 30 days, from August 2005 to September 2020. Pairs were randomly split into subsets as follows: 70% for training, 10% for validation, and 20% for final testing. A bimodal Gaussian mixture model was used to threshold PET scans into positive and negative labels. MRI data were fed into a convolutional neural network to generate imaging features. These features were combined in a logistic regression model with patient demographics, APOE gene status, cognitive scores, hippocampal volumes, and clinical diagnoses to classify each ATN biomarker component as positive or negative. Area under the receiver operating characteristic curve (AUC) analysis was used for model evaluation. Feature importance was derived from model coefficients and gradients. Results There were 2099 amyloid (mean patient age, 75 years ± 10 [SD]; 1110 male), 557 tau (mean patient age, 75 years ± 7; 280 male), and 2768 FDG PET (mean patient age, 75 years ± 7; 1645 male) and MRI pairs. Model AUCs for the test set were as follows: amyloid, 0.79 (95% CI: 0.74, 0.83); tau, 0.73 (95% CI: 0.58, 0.86); and neurodegeneration, 0.86 (95% CI: 0.83, 0.89). Within the networks, high gradients were present in key temporal, parietal, frontal, and occipital cortical regions. Model coefficients for cognitive scores, hippocampal volumes, and APOE status were highest. Conclusion A deep learning algorithm predicted each component of PET-determined ATN status with acceptable to excellent efficacy using MRI and other available diagnostic data. © RSNA, 2023 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半。。发布了新的文献求助10
3秒前
櫹櫆完成签到 ,获得积分10
10秒前
传奇3应助半。。采纳,获得10
12秒前
失眠太阳发布了新的文献求助10
19秒前
忧郁的火车完成签到,获得积分10
19秒前
思源应助想去电影院采纳,获得10
23秒前
25秒前
浮游应助科研通管家采纳,获得10
25秒前
25秒前
想去电影院完成签到,获得积分10
27秒前
...完成签到,获得积分10
27秒前
冷酷恶天完成签到 ,获得积分10
29秒前
34秒前
37秒前
徐per爱豆完成签到 ,获得积分10
37秒前
39秒前
cc321完成签到 ,获得积分10
41秒前
clhoxvpze完成签到 ,获得积分10
44秒前
lin.xy完成签到,获得积分10
47秒前
59秒前
1分钟前
Vaibhav完成签到,获得积分10
1分钟前
1分钟前
哈哈哈发布了新的文献求助10
1分钟前
舒心小海豚完成签到,获得积分10
1分钟前
tufei发布了新的文献求助10
1分钟前
文欣完成签到 ,获得积分0
1分钟前
好运常在完成签到 ,获得积分10
1分钟前
1分钟前
冰河不冰完成签到 ,获得积分10
1分钟前
Marvel发布了新的文献求助10
1分钟前
大个应助冷酷凝梦采纳,获得10
1分钟前
Kirisame完成签到,获得积分10
1分钟前
1分钟前
Kirisame发布了新的文献求助30
2分钟前
麻薯头头发布了新的文献求助10
2分钟前
木子完成签到 ,获得积分10
2分钟前
2分钟前
打打应助舒心小海豚采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5323565
求助须知:如何正确求助?哪些是违规求助? 4464825
关于积分的说明 13893617
捐赠科研通 4356340
什么是DOI,文献DOI怎么找? 2392769
邀请新用户注册赠送积分活动 1386290
关于科研通互助平台的介绍 1356324