MRI-based Deep Learning Assessment of Amyloid, Tau, and Neurodegeneration Biomarker Status across the Alzheimer Disease Spectrum

医学 生物标志物 阿尔茨海默病 淀粉样蛋白(真菌学) 神经退行性变 神经科学 疾病 病理 生物 生物化学 化学
作者
Christopher O. Lew,Longfei Zhou,Maciej A. Mazurowski,P. Murali Doraiswamy,Jeffrey R. Petrella
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (1) 被引量:9
标识
DOI:10.1148/radiol.222441
摘要

Background PET can be used for amyloid-tau-neurodegeneration (ATN) classification in Alzheimer disease, but incurs considerable cost and exposure to ionizing radiation. MRI currently has limited use in characterizing ATN status. Deep learning techniques can detect complex patterns in MRI data and have potential for noninvasive characterization of ATN status. Purpose To use deep learning to predict PET-determined ATN biomarker status using MRI and readily available diagnostic data. Materials and Methods MRI and PET data were retrospectively collected from the Alzheimer's Disease Imaging Initiative. PET scans were paired with MRI scans acquired within 30 days, from August 2005 to September 2020. Pairs were randomly split into subsets as follows: 70% for training, 10% for validation, and 20% for final testing. A bimodal Gaussian mixture model was used to threshold PET scans into positive and negative labels. MRI data were fed into a convolutional neural network to generate imaging features. These features were combined in a logistic regression model with patient demographics, APOE gene status, cognitive scores, hippocampal volumes, and clinical diagnoses to classify each ATN biomarker component as positive or negative. Area under the receiver operating characteristic curve (AUC) analysis was used for model evaluation. Feature importance was derived from model coefficients and gradients. Results There were 2099 amyloid (mean patient age, 75 years ± 10 [SD]; 1110 male), 557 tau (mean patient age, 75 years ± 7; 280 male), and 2768 FDG PET (mean patient age, 75 years ± 7; 1645 male) and MRI pairs. Model AUCs for the test set were as follows: amyloid, 0.79 (95% CI: 0.74, 0.83); tau, 0.73 (95% CI: 0.58, 0.86); and neurodegeneration, 0.86 (95% CI: 0.83, 0.89). Within the networks, high gradients were present in key temporal, parietal, frontal, and occipital cortical regions. Model coefficients for cognitive scores, hippocampal volumes, and APOE status were highest. Conclusion A deep learning algorithm predicted each component of PET-determined ATN status with acceptable to excellent efficacy using MRI and other available diagnostic data. © RSNA, 2023 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
_11_完成签到,获得积分10
刚刚
刚刚
duhdhd完成签到,获得积分10
刚刚
小何完成签到 ,获得积分20
刚刚
科研小菜狗完成签到,获得积分10
1秒前
1秒前
2秒前
SQC完成签到,获得积分10
2秒前
zz完成签到,获得积分10
2秒前
huapeng完成签到,获得积分20
2秒前
阿衡完成签到 ,获得积分10
2秒前
3秒前
包容诗槐完成签到,获得积分10
3秒前
4秒前
TIGA完成签到 ,获得积分10
4秒前
鲨鲨鲨鱼完成签到,获得积分10
6秒前
李爱国应助WUWU2435采纳,获得10
6秒前
7秒前
@你。发布了新的文献求助10
8秒前
大白发布了新的文献求助10
8秒前
pjm发布了新的文献求助10
9秒前
MMTI完成签到,获得积分10
9秒前
麕麕完成签到 ,获得积分10
9秒前
10秒前
10秒前
yes完成签到,获得积分10
10秒前
三金完成签到,获得积分10
11秒前
11秒前
赖林完成签到,获得积分10
11秒前
blue应助ardejiang采纳,获得20
12秒前
走之儿完成签到,获得积分10
14秒前
大椒完成签到 ,获得积分10
15秒前
15秒前
pjm完成签到,获得积分20
15秒前
16秒前
张书源完成签到 ,获得积分10
16秒前
鎏祈完成签到 ,获得积分10
16秒前
烟花应助大白采纳,获得10
18秒前
Dejavue发布了新的文献求助10
20秒前
catch完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109850
求助须知:如何正确求助?哪些是违规求助? 4318475
关于积分的说明 13454352
捐赠科研通 4148445
什么是DOI,文献DOI怎么找? 2273185
邀请新用户注册赠送积分活动 1275349
关于科研通互助平台的介绍 1213641