亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MRI-based Deep Learning Assessment of Amyloid, Tau, and Neurodegeneration Biomarker Status across the Alzheimer Disease Spectrum

医学 生物标志物 阿尔茨海默病 淀粉样蛋白(真菌学) 神经退行性变 神经科学 疾病 病理 生物 生物化学 化学
作者
Christopher O. Lew,Longfei Zhou,Maciej A. Mazurowski,P. Murali Doraiswamy,Jeffrey R. Petrella
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (1): e222441-e222441 被引量:19
标识
DOI:10.1148/radiol.222441
摘要

Background PET can be used for amyloid-tau-neurodegeneration (ATN) classification in Alzheimer disease, but incurs considerable cost and exposure to ionizing radiation. MRI currently has limited use in characterizing ATN status. Deep learning techniques can detect complex patterns in MRI data and have potential for noninvasive characterization of ATN status. Purpose To use deep learning to predict PET-determined ATN biomarker status using MRI and readily available diagnostic data. Materials and Methods MRI and PET data were retrospectively collected from the Alzheimer's Disease Imaging Initiative. PET scans were paired with MRI scans acquired within 30 days, from August 2005 to September 2020. Pairs were randomly split into subsets as follows: 70% for training, 10% for validation, and 20% for final testing. A bimodal Gaussian mixture model was used to threshold PET scans into positive and negative labels. MRI data were fed into a convolutional neural network to generate imaging features. These features were combined in a logistic regression model with patient demographics, APOE gene status, cognitive scores, hippocampal volumes, and clinical diagnoses to classify each ATN biomarker component as positive or negative. Area under the receiver operating characteristic curve (AUC) analysis was used for model evaluation. Feature importance was derived from model coefficients and gradients. Results There were 2099 amyloid (mean patient age, 75 years ± 10 [SD]; 1110 male), 557 tau (mean patient age, 75 years ± 7; 280 male), and 2768 FDG PET (mean patient age, 75 years ± 7; 1645 male) and MRI pairs. Model AUCs for the test set were as follows: amyloid, 0.79 (95% CI: 0.74, 0.83); tau, 0.73 (95% CI: 0.58, 0.86); and neurodegeneration, 0.86 (95% CI: 0.83, 0.89). Within the networks, high gradients were present in key temporal, parietal, frontal, and occipital cortical regions. Model coefficients for cognitive scores, hippocampal volumes, and APOE status were highest. Conclusion A deep learning algorithm predicted each component of PET-determined ATN status with acceptable to excellent efficacy using MRI and other available diagnostic data. © RSNA, 2023 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
8秒前
归尘发布了新的文献求助10
12秒前
善学以致用应助Willow采纳,获得10
25秒前
飞天大南瓜完成签到,获得积分10
38秒前
黑摄会阿Fay完成签到,获得积分10
38秒前
归尘发布了新的文献求助10
47秒前
iiii完成签到,获得积分10
53秒前
qaz111222完成签到 ,获得积分10
1分钟前
倒立的松鼠给倒立的松鼠的求助进行了留言
1分钟前
1分钟前
SciGPT应助LJP采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
blenx完成签到,获得积分10
2分钟前
文艺安青完成签到 ,获得积分10
2分钟前
爆米花应助lucky采纳,获得10
2分钟前
爱静静完成签到,获得积分0
2分钟前
Zhangfu完成签到,获得积分10
2分钟前
可爱的函函应助SiboN采纳,获得10
2分钟前
兮豫完成签到 ,获得积分10
2分钟前
lucky给lucky的求助进行了留言
2分钟前
3分钟前
归尘发布了新的文献求助10
3分钟前
3分钟前
胖子东发布了新的文献求助10
3分钟前
胖子东完成签到,获得积分10
3分钟前
yuchuan应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
FashionBoy应助科研通管家采纳,获得10
3分钟前
4分钟前
归尘发布了新的文献求助30
4分钟前
4分钟前
lucky发布了新的文献求助10
4分钟前
4分钟前
归尘发布了新的文献求助30
5分钟前
Raunio完成签到,获得积分10
5分钟前
5分钟前
5分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449971
求助须知:如何正确求助?哪些是违规求助? 4557893
关于积分的说明 14265141
捐赠科研通 4481164
什么是DOI,文献DOI怎么找? 2454700
邀请新用户注册赠送积分活动 1445487
关于科研通互助平台的介绍 1421360