MRI-based Deep Learning Assessment of Amyloid, Tau, and Neurodegeneration Biomarker Status across the Alzheimer Disease Spectrum

医学 生物标志物 成像生物标志物 神经影像学 神经退行性变 核医学 磁共振成像 疾病 病理 放射科 精神科 生物化学 化学
作者
Christopher Lew,Longfei Zhou,Maciej A. Mazurowski,P. Murali Doraiswamy,Jeffrey R. Petrella
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (1) 被引量:2
标识
DOI:10.1148/radiol.222441
摘要

Background PET can be used for amyloid-tau-neurodegeneration (ATN) classification in Alzheimer disease, but incurs considerable cost and exposure to ionizing radiation. MRI currently has limited use in characterizing ATN status. Deep learning techniques can detect complex patterns in MRI data and have potential for noninvasive characterization of ATN status. Purpose To use deep learning to predict PET-determined ATN biomarker status using MRI and readily available diagnostic data. Materials and Methods MRI and PET data were retrospectively collected from the Alzheimer’s Disease Imaging Initiative. PET scans were paired with MRI scans acquired within 30 days, from August 2005 to September 2020. Pairs were randomly split into subsets as follows: 70% for training, 10% for validation, and 20% for final testing. A bimodal Gaussian mixture model was used to threshold PET scans into positive and negative labels. MRI data were fed into a convolutional neural network to generate imaging features. These features were combined in a logistic regression model with patient demographics, APOE gene status, cognitive scores, hippocampal volumes, and clinical diagnoses to classify each ATN biomarker component as positive or negative. Area under the receiver operating characteristic curve (AUC) analysis was used for model evaluation. Feature importance was derived from model coefficients and gradients. Results There were 2099 amyloid (mean patient age, 75 years ± 10 [SD]; 1110 male), 557 tau (mean patient age, 75 years ± 7; 280 male), and 2768 FDG PET (mean patient age, 75 years ± 7; 1645 male) and MRI pairs. Model AUCs for the test set were as follows: amyloid, 0.79 (95% CI: 0.74, 0.83); tau, 0.73 (95% CI: 0.58, 0.86); and neurodegeneration, 0.86 (95% CI: 0.83, 0.89). Within the networks, high gradients were present in key temporal, parietal, frontal, and occipital cortical regions. Model coefficients for cognitive scores, hippocampal volumes, and APOE status were highest. Conclusion A deep learning algorithm predicted each component of PET-determined ATN status with acceptable to excellent efficacy using MRI and other available diagnostic data. © RSNA, 2023 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
金22完成签到,获得积分10
2秒前
3秒前
6秒前
mrcz完成签到 ,获得积分10
13秒前
彪壮的小玉完成签到,获得积分10
15秒前
Qianyu发布了新的文献求助150
15秒前
852应助寒雪采纳,获得10
18秒前
19秒前
22秒前
23秒前
万能图书馆应助醉熏的井采纳,获得10
24秒前
25秒前
柳柳完成签到,获得积分10
26秒前
carm小蛋黄发布了新的文献求助10
27秒前
摸鱼鱼完成签到,获得积分10
27秒前
30秒前
33秒前
乐乐应助大大耳朵采纳,获得10
33秒前
田様应助伤心小肥子采纳,获得10
34秒前
35秒前
CodeCraft应助carm小蛋黄采纳,获得10
36秒前
慕青应助陈杨采纳,获得10
37秒前
37秒前
ffffffflzx666发布了新的文献求助10
37秒前
晴空万里发布了新的文献求助10
38秒前
39秒前
39秒前
jialin完成签到 ,获得积分10
40秒前
脑洞疼应助努力独行者采纳,获得30
42秒前
听说发布了新的文献求助10
43秒前
醉熏的井发布了新的文献求助10
45秒前
神勇的小小完成签到 ,获得积分10
48秒前
咕噜完成签到 ,获得积分10
49秒前
50秒前
cc发布了新的文献求助10
51秒前
勤奋的芷荷完成签到,获得积分10
54秒前
激动的水壶完成签到,获得积分10
54秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
55秒前
充电宝应助科研通管家采纳,获得10
55秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164190
求助须知:如何正确求助?哪些是违规求助? 2814916
关于积分的说明 7906988
捐赠科研通 2474500
什么是DOI,文献DOI怎么找? 1317533
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228