MRI-based Deep Learning Assessment of Amyloid, Tau, and Neurodegeneration Biomarker Status across the Alzheimer Disease Spectrum

医学 生物标志物 阿尔茨海默病 淀粉样蛋白(真菌学) 神经退行性变 神经科学 疾病 病理 生物 生物化学 化学
作者
Christopher O. Lew,Longfei Zhou,Maciej A. Mazurowski,P. Murali Doraiswamy,Jeffrey R. Petrella
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (1) 被引量:9
标识
DOI:10.1148/radiol.222441
摘要

Background PET can be used for amyloid-tau-neurodegeneration (ATN) classification in Alzheimer disease, but incurs considerable cost and exposure to ionizing radiation. MRI currently has limited use in characterizing ATN status. Deep learning techniques can detect complex patterns in MRI data and have potential for noninvasive characterization of ATN status. Purpose To use deep learning to predict PET-determined ATN biomarker status using MRI and readily available diagnostic data. Materials and Methods MRI and PET data were retrospectively collected from the Alzheimer's Disease Imaging Initiative. PET scans were paired with MRI scans acquired within 30 days, from August 2005 to September 2020. Pairs were randomly split into subsets as follows: 70% for training, 10% for validation, and 20% for final testing. A bimodal Gaussian mixture model was used to threshold PET scans into positive and negative labels. MRI data were fed into a convolutional neural network to generate imaging features. These features were combined in a logistic regression model with patient demographics, APOE gene status, cognitive scores, hippocampal volumes, and clinical diagnoses to classify each ATN biomarker component as positive or negative. Area under the receiver operating characteristic curve (AUC) analysis was used for model evaluation. Feature importance was derived from model coefficients and gradients. Results There were 2099 amyloid (mean patient age, 75 years ± 10 [SD]; 1110 male), 557 tau (mean patient age, 75 years ± 7; 280 male), and 2768 FDG PET (mean patient age, 75 years ± 7; 1645 male) and MRI pairs. Model AUCs for the test set were as follows: amyloid, 0.79 (95% CI: 0.74, 0.83); tau, 0.73 (95% CI: 0.58, 0.86); and neurodegeneration, 0.86 (95% CI: 0.83, 0.89). Within the networks, high gradients were present in key temporal, parietal, frontal, and occipital cortical regions. Model coefficients for cognitive scores, hippocampal volumes, and APOE status were highest. Conclusion A deep learning algorithm predicted each component of PET-determined ATN status with acceptable to excellent efficacy using MRI and other available diagnostic data. © RSNA, 2023 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
顾矜应助Wxj246801采纳,获得10
1秒前
1秒前
烟花应助沁沁沁采纳,获得10
1秒前
忐忑的果汁完成签到,获得积分10
7秒前
达克赛德发布了新的文献求助10
8秒前
9秒前
沁沁沁完成签到,获得积分10
10秒前
Zx_1993应助小野采纳,获得20
12秒前
馆长应助哪吒采纳,获得20
13秒前
沁沁沁发布了新的文献求助10
14秒前
斯文败类应助JiayanLi采纳,获得10
14秒前
soey0319应助老迟到的澜采纳,获得10
18秒前
春花完成签到,获得积分10
18秒前
达克赛德完成签到 ,获得积分10
19秒前
19秒前
19秒前
HelingXu完成签到 ,获得积分10
19秒前
Owen应助fenfen好学采纳,获得10
23秒前
Virtual应助舒屿望迷采纳,获得20
23秒前
2023200743完成签到,获得积分10
23秒前
左嫣娆完成签到,获得积分10
24秒前
科研宝发布了新的文献求助10
24秒前
25秒前
26秒前
Nichol发布了新的文献求助10
26秒前
oxear完成签到,获得积分10
28秒前
英俊的铭应助2023200743采纳,获得10
28秒前
jj完成签到,获得积分10
29秒前
Wxj246801发布了新的文献求助10
30秒前
tongitian完成签到,获得积分10
31秒前
LILY发布了新的文献求助10
31秒前
清风再拂面完成签到,获得积分10
32秒前
万能图书馆应助JJ20采纳,获得10
32秒前
忧虑的摇伽完成签到,获得积分10
33秒前
33秒前
爱与感谢完成签到 ,获得积分10
34秒前
李爱国应助Gates采纳,获得10
35秒前
圆锥香蕉应助科研通管家采纳,获得20
36秒前
萧水白应助科研通管家采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4537055
求助须知:如何正确求助?哪些是违规求助? 3972128
关于积分的说明 12305419
捐赠科研通 3638852
什么是DOI,文献DOI怎么找? 2003525
邀请新用户注册赠送积分活动 1038901
科研通“疑难数据库(出版商)”最低求助积分说明 928336