已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An interpretable anti-noise convolutional neural network for online chatter detection in thin-walled parts milling

可解释性 判别式 计算机科学 噪音(视频) 特征(语言学) 卷积神经网络 频域 人工智能 干扰(通信) 模式识别(心理学) 频带 计算机视觉 图像(数学) 频道(广播) 计算机网络 哲学 语言学 带宽(计算)
作者
Yezhong Lu,Haifeng Ma,Yuxin Sun,Qinghua Song,Zhanqiang Liu,Zhenhua Xiong
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:206: 110885-110885 被引量:13
标识
DOI:10.1016/j.ymssp.2023.110885
摘要

Chatter is a notoriously unstable phenomenon that can adversely affect both surface quality and machining efficiency. To achieve high-performance machining, the development of online chatter detection is of paramount importance. Nevertheless, changes in chatter frequency with cutting position and noise interference during the thin-walled parts milling process present significant challenges to chatter detection. To tackle this issue, an adaptive frequency band attention module (AFBAM) is designed, which is characterized by not relying on prior knowledge (namely modal parameters, frequency spectrum analysis, etc.), and adaptively enhances the frequency band containing abundant chatter information and reduces noise interference by learning time-frequency domain characteristics of signals. After AFBAM highlights the relevant frequency band of input signal, a discriminative feature attention module (DFAM) is constructed to adaptively recalibrate feature responses of each convolutional layer utilizing the global information. DFAM enhances relevant features and suppresses irrelevant features, thus improving the discriminative feature learning and redundant information suppression abilities of network. In addition, both AFBAM and DFAM exhibit clear physical interpretability, which improves the interpretability of network. Based on AFBAM and DFAM, an interpretable anti-noise convolutional neural network for online chatter detection, named AD-CNN, is established. Milling experiments with pocket-shaped thin-walled parts are conducted under different cutting parameters. The results show that the proposed method enables better detection accuracy and anti-noise ability than other state-of-the-art methods. Furthermore, visualization analysis of AFBAM and DFAM brings new insights into the interpretability of convolutional neural network in the field of chatter detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪皮king完成签到,获得积分10
1秒前
东方翰发布了新的文献求助10
1秒前
小蘑菇应助砚冰采纳,获得10
3秒前
JL完成签到,获得积分10
4秒前
6秒前
yuzhu完成签到,获得积分10
8秒前
附姜完成签到 ,获得积分10
9秒前
忧郁的寻冬完成签到,获得积分10
10秒前
天天快乐应助花笙采纳,获得10
10秒前
哈哈哈完成签到 ,获得积分10
10秒前
勤恳剑身完成签到,获得积分10
12秒前
Owen应助云氲采纳,获得10
13秒前
无花果应助微风采纳,获得10
14秒前
华仔应助hhhhh采纳,获得10
16秒前
着急的若魔完成签到,获得积分10
18秒前
ASH完成签到 ,获得积分10
18秒前
19秒前
微生玉树完成签到 ,获得积分10
20秒前
23秒前
啦啦啦发布了新的文献求助20
24秒前
wxi发布了新的文献求助10
24秒前
微风完成签到,获得积分10
27秒前
hhhhh发布了新的文献求助10
29秒前
安详向薇完成签到,获得积分10
31秒前
顾矜应助wxi采纳,获得10
32秒前
SYLH应助没咋了采纳,获得10
32秒前
乔达摩悉达多完成签到 ,获得积分10
33秒前
34秒前
潇洒闭月完成签到,获得积分10
34秒前
34秒前
标致的冰淇淋完成签到,获得积分20
35秒前
干净初彤发布了新的文献求助10
36秒前
恢复出厂设置完成签到,获得积分10
36秒前
晚风发布了新的文献求助10
36秒前
pretty_wy发布了新的文献求助10
37秒前
39秒前
42秒前
hqh发布了新的文献求助10
43秒前
syyy完成签到,获得积分10
44秒前
45秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484189
求助须知:如何正确求助?哪些是违规求助? 3073271
关于积分的说明 9130258
捐赠科研通 2764931
什么是DOI,文献DOI怎么找? 1517450
邀请新用户注册赠送积分活动 702136
科研通“疑难数据库(出版商)”最低求助积分说明 701095