WordTransABSA: Enhancing Aspect-based Sentiment Analysis with masked language modeling for affective token prediction

计算机科学 情绪分析 杠杆(统计) 人工智能 判决 自然语言处理 安全性令牌 词(群论) 编码器 语言模型 机器学习 语言学 哲学 计算机安全 操作系统
作者
Weiqiang Jin,Biao Zhao,Yu Zhang,Jia Huang,Hang Yu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122289-122289 被引量:11
标识
DOI:10.1016/j.eswa.2023.122289
摘要

In recent years, Aspect-based Sentiment Analysis (ABSA) has been a crucial yet challenging task in recognizing textual emotions from text. ABSA has numerous application across various fields, such as social media, commodity review, and movie comment, making it an attractive area of research. Many researchers are working to develop more powerful sentiment analysis models. Currently, most existing ABSA models use the generic pre-trained language models (PLMs) based fine-tuning paradigm, which only utilizes the encoder parameters while discarding the decoder parameters of PLMs. However, this approach fails to leverage the prior knowledge revealed in PLMs effectively. To address these issues, we investigate the potential of the initial pre-training scheme of PLMs to conduct ABSA and thus propose a novel approach in this paper, namely Target Word Transferred ABSA (WordTransABSA). In WordTransABSA, we propose "Word Transferred LM", a novel sequence-level optimization strategy that transferred target words in sentence into pivot tokens to stimulate better PLM semantic understanding capability. Given a sentence with aspect terms as input, WordTransABSA generates contextually appropriate semantics and predicts the affective tokens on the corresponding positions of the aspect terms. The final sentiment polarity of each aspect term is determined through several sentiment identification strategies that we selected. WordTransABSA takes full advantage of the versatile linguistic knowledge of Pre-trained Language Model, resulting in competitive accuracy compared with recent baselines. The WordTransABSA demonstrates its superiority and effectiveness through extensive experiments in both data-sufficient (full-data supervised learning) and data-insufficient (few-shot learning) scenarios. We have made our code publicly available on GitHub: https://github.com/albert-jin/WordTransABSA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Jean发布了新的文献求助10
2秒前
3秒前
小二郎应助虚幻冷松采纳,获得30
3秒前
3秒前
zmx完成签到 ,获得积分10
3秒前
4秒前
XXHH发布了新的文献求助10
5秒前
neufy发布了新的文献求助10
8秒前
墨海应助懦弱的难敌采纳,获得10
8秒前
哈哈关注了科研通微信公众号
8秒前
yan123发布了新的文献求助10
9秒前
Rita应助苏暖玉采纳,获得10
10秒前
sweet完成签到,获得积分10
10秒前
11秒前
汉堡包应助呆呆小猪采纳,获得10
13秒前
13秒前
13秒前
赵飞天发布了新的文献求助10
14秒前
14秒前
虚幻冷松发布了新的文献求助30
17秒前
汉关完成签到,获得积分10
17秒前
gomm完成签到,获得积分10
17秒前
ZhaoCun发布了新的文献求助10
17秒前
简单的笑蓝完成签到 ,获得积分10
19秒前
19秒前
11发布了新的文献求助10
20秒前
大个应助勤恳的若翠采纳,获得10
20秒前
20秒前
充电宝应助Sean采纳,获得10
21秒前
王灿灿完成签到,获得积分10
23秒前
23秒前
JamesPei应助yan123采纳,获得10
24秒前
24秒前
苏暖玉完成签到,获得积分10
24秒前
传奇3应助肥而不腻的羚羊采纳,获得10
25秒前
善学以致用应助麻团儿采纳,获得10
26秒前
27秒前
zxy发布了新的文献求助10
28秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228196
求助须知:如何正确求助?哪些是违规求助? 2876005
关于积分的说明 8193611
捐赠科研通 2543161
什么是DOI,文献DOI怎么找? 1373580
科研通“疑难数据库(出版商)”最低求助积分说明 646814
邀请新用户注册赠送积分活动 621310