Intention-convolution and hybrid-attention network for vehicle trajectory prediction

弹道 计算机科学 联营 卷积(计算机科学) 光学(聚焦) 人工智能 运动(物理) 期限(时间) 机器学习 国家(计算机科学) 构造(python库) 模拟 算法 人工神经网络 光学 物理 量子力学 程序设计语言 天文
作者
Chao Li,Zhanwen Liu,Shan Lin,Yang Wang,Xiangmo Zhao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:236: 121412-121412 被引量:11
标识
DOI:10.1016/j.eswa.2023.121412
摘要

Trajectory prediction aims to estimate the future location of the vehicle based on its historical motion state, which is essential for driving decision-making and local motion planning of smart vehicles. However, affected by the multiple complex interaction in the traffic scene, predicting future trajectory accurately is a challenging task. The majority of existing methods only focus on modeling the inter-vehicle interaction, while ignoring the influence of road alignment and driver's lane-change intention, making the poor performance of models, especially for long-term prediction or when the vehicle maneuvers laterally. To overcome the deficiencies, this paper proposes Intention-convolution and Hybrid-Attention Network (IH-Net) for reliable trajectory prediction. Specifically, we analyze the correlation of lane-change behavior and the motion state of the vehicle, and then the Intention-convolutional Social Pooling module (I-CS) is introduced to extract complete interaction including the driver's lane-change intention and inter-vehicle interaction. In addition, we construct a novel Hybrid Attention Mechanism (H-AM) to explore the trajectory periodicity formed under the restriction of road alignment, as well as the impacts of different features on trajectory prediction, which is used to improve the model's long-term prediction capacity. The model's prediction accuracy with RMSE loss function is tested on two public datasets NGSIM and highD, and the results demonstrate that IH-Net remarkably outperforms the state-of-art methods in long-term prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助阳尧采纳,获得10
刚刚
1秒前
1秒前
abjz完成签到,获得积分10
1秒前
三千弱水为君饮完成签到,获得积分10
2秒前
2秒前
cata完成签到,获得积分10
2秒前
感谢79转发科研通微信,获得积分50
2秒前
2秒前
troubadourelf发布了新的文献求助10
3秒前
frank发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
感谢超帅冬易转发科研通微信,获得积分50
6秒前
6秒前
7秒前
7秒前
lixia完成签到 ,获得积分10
7秒前
7秒前
8秒前
在水一方应助jy采纳,获得10
8秒前
8秒前
Lucas完成签到,获得积分10
9秒前
9秒前
NorthWang发布了新的文献求助10
9秒前
薄哼哼完成签到,获得积分10
9秒前
troubadourelf完成签到,获得积分10
9秒前
科研小白菜完成签到,获得积分20
10秒前
淡定的思松应助12采纳,获得10
10秒前
lan发布了新的文献求助10
10秒前
韩金龙发布了新的文献求助10
11秒前
11秒前
小飞七应助红毛兔采纳,获得10
11秒前
小仙虎殿下完成签到 ,获得积分10
11秒前
Ethan完成签到,获得积分10
12秒前
12秒前
13秒前
感谢抹茶芋泥小圆子转发科研通微信,获得积分50
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794