Intention-convolution and hybrid-attention network for vehicle trajectory prediction

弹道 计算机科学 联营 卷积(计算机科学) 光学(聚焦) 人工智能 运动(物理) 期限(时间) 机器学习 国家(计算机科学) 算法 人工神经网络 天文 量子力学 光学 物理
作者
Chao Li,Zhanwen Liu,Shan Lin,Yang Wang,Xiangmo Zhao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:236: 121412-121412 被引量:18
标识
DOI:10.1016/j.eswa.2023.121412
摘要

Trajectory prediction aims to estimate the future location of the vehicle based on its historical motion state, which is essential for driving decision-making and local motion planning of smart vehicles. However, affected by the multiple complex interaction in the traffic scene, predicting future trajectory accurately is a challenging task. The majority of existing methods only focus on modeling the inter-vehicle interaction, while ignoring the influence of road alignment and driver's lane-change intention, making the poor performance of models, especially for long-term prediction or when the vehicle maneuvers laterally. To overcome the deficiencies, this paper proposes Intention-convolution and Hybrid-Attention Network (IH-Net) for reliable trajectory prediction. Specifically, we analyze the correlation of lane-change behavior and the motion state of the vehicle, and then the Intention-convolutional Social Pooling module (I-CS) is introduced to extract complete interaction including the driver's lane-change intention and inter-vehicle interaction. In addition, we construct a novel Hybrid Attention Mechanism (H-AM) to explore the trajectory periodicity formed under the restriction of road alignment, as well as the impacts of different features on trajectory prediction, which is used to improve the model's long-term prediction capacity. The model's prediction accuracy with RMSE loss function is tested on two public datasets NGSIM and highD, and the results demonstrate that IH-Net remarkably outperforms the state-of-art methods in long-term prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yar应助flyfish采纳,获得10
2秒前
3秒前
马佳琪发布了新的文献求助10
3秒前
Paula_xr完成签到,获得积分10
4秒前
4秒前
Owen应助李哈哈采纳,获得10
5秒前
调皮帽子完成签到 ,获得积分10
6秒前
沙拉依丁发布了新的文献求助10
6秒前
7秒前
hyhyhyhy发布了新的文献求助10
8秒前
xxz完成签到,获得积分20
8秒前
9秒前
jiang发布了新的文献求助10
11秒前
11秒前
12秒前
Ren应助tp040900采纳,获得10
12秒前
xxz发布了新的文献求助10
12秒前
九鸢完成签到,获得积分10
12秒前
NexusExplorer应助YY采纳,获得10
12秒前
lll发布了新的文献求助10
13秒前
13秒前
马旭辉发布了新的文献求助10
14秒前
科研通AI2S应助橙色采纳,获得10
14秒前
李哈哈完成签到,获得积分10
14秒前
李哈哈发布了新的文献求助10
17秒前
wanci应助柚子采纳,获得10
17秒前
Ren应助xiao采纳,获得10
18秒前
20秒前
隐形曼青应助沟通亿心采纳,获得10
21秒前
马俐发布了新的文献求助10
22秒前
所所应助科研通管家采纳,获得10
22秒前
ED应助科研通管家采纳,获得10
22秒前
大模型应助科研通管家采纳,获得10
22秒前
Owen应助科研通管家采纳,获得10
23秒前
23秒前
ED应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
天天快乐应助科研通管家采纳,获得10
23秒前
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993059
求助须知:如何正确求助?哪些是违规求助? 3533948
关于积分的说明 11264188
捐赠科研通 3273624
什么是DOI,文献DOI怎么找? 1806134
邀请新用户注册赠送积分活动 882991
科研通“疑难数据库(出版商)”最低求助积分说明 809629