Prediction of Tumor PD-L1 Expression in Resectable Non-Small Cell Lung Cancer by Machine Learning Models Based on Clinical and Radiological Features: Performance Comparison With Preoperative Biopsy

医学 活检 恶性肿瘤 无线电技术 癌症 放射科 肺癌 人工智能 病理 内科学 计算机科学
作者
Kohei Hashimoto,Yu Murakami,Kenshiro Omura,Hikaru Takahashi,Ryoko Suzuki,Yasuo Yoshioka,Masahiko Oguchi,Junji Ichinose,Yosuke Matsuura,Masayuki Nakao,Sakae Okumura,Hironori Ninomiya,Makoto Nishio,Mingyon Mun
出处
期刊:Clinical Lung Cancer [Elsevier]
标识
DOI:10.1016/j.cllc.2023.08.010
摘要

Objective We investigated if PD-L1 expression can be predicted by machine learning using clinical and imaging features. Methods We included 117 patients with c-stage I/II non-small cell lung cancer who underwent radical resection. A total of 3951 radiomic features were extracted by defining the tumor (within tumor contour), rim (contour ±3 mm) and exterior (contour +10 mm) on preoperative contrast computed tomography. After feature selection by Boruta algorithm, prediction models of tumor PD-L1 expression (22C3: ≥1%, <1%) of resected specimens were constructed using Random Forest: radiomics, clinical, and combined models. Their performance was evaluated by five-fold cross-validation, and AUCs were compared using Delong test. Next, study groups were categorized as patients without biopsy (training set), and those with biopsy (test set). Predictive ability of biopsy was compared to each prediction model. Results Of 117 patients (66 ± 10 years old, 48% male), 33 (28.2%) had PD-L1≥1%. Mean AUC of PD-L1≥1% for the validation set in radiomics, clinical, and combined models were 0.80, 0.80, and 0.83 (p=0.32 vs. clinical model), respectively. The diagnosis of malignancy was made in 22/38 (58%) patients with attempted biopsies, and PD-L1 was measurable in 19/38 (50%) patients. Diagnostic accuracies of PD-L1≥1% from 19 determinable biopsies and 38 all attempted biopsies were 0.68 and 0.34, respectively. These were outperformed by machine learning: 0.71, 0.71, and 0.74 for radiomics, clinical, and combined models, respectively. Conclusions Our machine learning could be an adjunctive tool in estimating PD-L1 expression prior to neoadjuvant treatment, particularly when PD-L1 is indeterminable with biopsy. MiniAbstract We included 117 patients with c-stage I/II non-small cell lung cancer who underwent radical resection.Machine learning models, using clinical and radiomics features, predicted tumor PD-L1 expression in resected specimens (AUC=0.83) with a higher predictive ability than that of preoperative biopsy.Our machine learning could be an adjunctive tool in estimating PD-L1 expression prior to neoadjuvant treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1234sxcv发布了新的文献求助10
1秒前
Mengyuan完成签到,获得积分20
1秒前
bkagyin应助ZJJ采纳,获得10
1秒前
1秒前
2秒前
xxx发布了新的文献求助10
2秒前
2秒前
Natasha发布了新的文献求助10
3秒前
3秒前
情怀应助111采纳,获得30
3秒前
小杨弟弟发布了新的文献求助10
3秒前
3秒前
cclyfan完成签到,获得积分10
4秒前
蘑菇完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助30
5秒前
5秒前
刘旭晴发布了新的文献求助10
5秒前
SciGPT应助瑜衡采纳,获得10
5秒前
6秒前
BowieHuang应助1234sxcv采纳,获得10
6秒前
66发布了新的文献求助10
7秒前
smg1307完成签到 ,获得积分10
7秒前
8秒前
FashionBoy应助嚣张的爆米花采纳,获得10
8秒前
9秒前
斯文败类应助黄奥龙采纳,获得10
9秒前
晴天发布了新的文献求助10
9秒前
wind关注了科研通微信公众号
10秒前
10秒前
可爱的函函应助春深半夏采纳,获得10
10秒前
Adc应助fangyuan采纳,获得20
11秒前
富贵李发布了新的文献求助10
11秒前
11秒前
ding应助宇月幸成采纳,获得10
11秒前
11秒前
Azhou完成签到,获得积分10
11秒前
可爱小铭完成签到,获得积分10
11秒前
FAFA发布了新的文献求助10
12秒前
13秒前
期辰完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5721428
求助须知:如何正确求助?哪些是违规求助? 5265735
关于积分的说明 15294026
捐赠科研通 4870760
什么是DOI,文献DOI怎么找? 2615607
邀请新用户注册赠送积分活动 1565381
关于科研通互助平台的介绍 1522454