药理学
癫痫
姜黄素
诱导多能干细胞
药物发现
斑马鱼
胡椒碱
医学
体内
化学
神经科学
生物
生物化学
基因
胚胎干细胞
生物技术
作者
Chunfang Zhao,Ben Rollo,Muhammad Shahid Javaid,Ziyu Huang,Wen He,Hong Xu,Patrick Kwan,Chunbo Zhang
标识
DOI:10.1016/j.jare.2023.11.022
摘要
One-third of people with epilepsy continue to experience seizures despite treatment with existing anti-seizure medications (ASMs). The failure of modern ASMs to substantially improve epilepsy prognosis has been partly attributed to overreliance on acute rodent models in preclinical drug development as they do not adequately recapitulate the mechanisms of human epilepsy, are labor-intensive and unsuitable for high-throughput screening (HTS). There is an urgent need to find human-relevant HTS models in preclinical drug development to identify novel anti-seizure compounds. This paper developed high-throughput preclinical screening models to identify new ASMs. 14 natural compounds (α-asarone, curcumin, vinpocetine, magnolol, ligustrazine, osthole, tanshinone IIA, piperine, gastrodin, quercetin, berberine, chrysin, schizandrin A and resveratrol) were assessed for their ability to suppress epileptiform activity as measured by multi-electrode arrays (MEA) in neural cultures derived from human induced pluripotent stem cells (iPSCs). In parallel, they were tested for anti-seizure effects in zebrafish and mouse models, which have been widely used in development of modern ASMs. The effects of the compounds in these models were compared. Two approved ASMs were used as positive controls. Epileptiform activity could be induced in iPSCs-derived neurons following treatment with 4-aminopyridine (4-AP) and inhibited by standard ASMs, carbamazepine, and phenytoin. Eight of the 14 natural compounds significantly inhibited the epileptiform activity in iPSCs-derived neurons. Among them, piperine, magnolol, α-asarone, and osthole showed significant anti-seizure effects both in zebrafish and mice. Comparative analysis showed that compounds ineffective in the iPSCs-derived neural model also showed no anti-seizure effects in the zebrafish or mouse models. Our findings support the use of iPSCs-derived human neurons for first-line high-throughput screening to identify compounds with anti-seizure properties and exclude ineffective compounds. Effective compounds may then be selected for animal evaluation before clinical testing. This integrated approach may improve the efficiency of developing novel ASMs.
科研通智能强力驱动
Strongly Powered by AbleSci AI