CoYangCZ: a new spatial interpolation method for nonstationary multivariate spatial processes

多元插值 空间分析 克里金 插值(计算机图形学) 多元统计 数学 空间相关性 统计 估计员 双线性插值 计算机科学 人工智能 图像(数学)
作者
Qiliang Liu,Yongchuan Zhu,Yang Jie,Xiancheng Mao,Min Deng
出处
期刊:International Journal of Geographical Information Science [Informa]
卷期号:38 (1): 48-76 被引量:1
标识
DOI:10.1080/13658816.2023.2268665
摘要

AbstractIn multivariate spatial interpolation, the accuracy of a variable of interest can be improved using ancillary variables. Although geostatistical methods are widely used for multivariate spatial interpolation, these methods usually require second-order stationary assumption of spatial processes, which is difficult to satisfy in practice. We developed a new multivariate spatial interpolation method based on Yang-Chizhong filtering (CoYangCZ) to overcome this limitation. CoYangCZ does not solve the multivariate spatial interpolation problem from a purely statistical point of view but integrates geometry and statistics-based strategies. First, we used a weighted moving average method based on binomial coefficients (i.e. Yang-Chizhong filtering) to fit the spatial autocorrelation structure of each spatial variable from a geometric perspective. We then quantified the spatial autocorrelation of each spatial variable and the correlations between different spatial variables by analyzing the variances of different spatial variables. Finally, we obtain the best linear unbiased estimators at the unsampled locations. Experiments on air pollution and meteorological datasets show that CoYangCZ has a higher interpolation accuracy than cokriging, regression kriging, gradient plus-inverse distance squared, sequential Gaussian co-simulation, and the kriging convolutional network. CoYangCZ can adapt to second-order non-stationary spatial processes; therefore, it has a wider scope of application than purely statistical methods.Keywords: Multivariate spatial processesspatial interpolationYang Chizhong filteringgeostatistics AcknowledgementsWe gratefully acknowledge the comments from the editor and the reviewers.Author contributionsQiliang Liu, Yongchuan Zhu, and Jie Yang conceived and designed the presented idea. Yongchuan Zhu and Jie Yang implemented the experiments and analysed the results. Qiliang Liu and Yongchuan Zhu wrote the manuscript. Xiancheng Mao and Min Deng reviewed the manuscript, and provided comments.Disclosure statementNo potential conflict of interest was reported by the author(s).Data and codes availability statementThe findings of this study are backed by data and codes that can be found on 'figshare.com', with the identifier at the public link: https://doi.org/10.6084/m9.figshare.24230179.Additional informationFundingThis study was funded through support from National Natural Science Foundation of China (NSFC) [No. 42271484 and 41971353] and Natural Science Foundation of Hunan Province [No. 2021JJ20058].Notes on contributorsQiliang LiuQiliang Liu is currently a professor at Central South University, Hunan, China. His research interests focus on multi-scale spatio-temporal data mining and spatiotemporal statistics. He has published more than 30 peer-reviewed journal articles in these areas.Yongchuan ZhuYongchuan Zhu is currently a postgraduate student at Central South University and his research interests focus on spatial statistics.Jie YangJie Yang is currently a Ph.D. candidate at Central South University and his research interests focus on spatio-temporal statistics.Xiancheng MaoXiancheng Mao is currently a professor at Central South University. His research interests are 3D geological modeling and mineral prospectivity mapping.Min DengMin Deng is currently a professor at Central South University and the associate dean of School of Geosciences and info-physics. His research interests are map generalization, spatio-temporal data analysis and mining.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷你的冰巧完成签到,获得积分10
1秒前
3秒前
自然的衫完成签到 ,获得积分10
3秒前
嗯哼应助香瓜采纳,获得20
3秒前
3秒前
wen发布了新的文献求助10
4秒前
动人的巧荷完成签到,获得积分20
6秒前
ddd发布了新的文献求助30
6秒前
Hello应助买菜市民熊先生采纳,获得10
7秒前
迷路茈完成签到,获得积分10
10秒前
Starry完成签到,获得积分10
12秒前
kaka完成签到,获得积分10
13秒前
13秒前
13秒前
简单花花完成签到,获得积分10
14秒前
仙女的小可爱完成签到 ,获得积分10
19秒前
小鹿5460发布了新的文献求助10
20秒前
20秒前
顺利念柏完成签到,获得积分10
21秒前
22秒前
22秒前
嗯哼应助csx采纳,获得20
23秒前
24秒前
桐桐应助假期采纳,获得10
24秒前
26秒前
情怀应助顺利念柏采纳,获得10
27秒前
情怀应助科研通管家采纳,获得30
28秒前
共享精神应助科研通管家采纳,获得10
28秒前
SCINEXUS应助科研通管家采纳,获得20
28秒前
隐形曼青应助科研通管家采纳,获得30
28秒前
28秒前
SCINEXUS应助科研通管家采纳,获得50
28秒前
嗯哼应助科研通管家采纳,获得20
28秒前
完美世界应助科研通管家采纳,获得10
28秒前
大个应助科研通管家采纳,获得10
29秒前
慕青应助科研通管家采纳,获得10
29秒前
科目三应助科研通管家采纳,获得10
29秒前
29秒前
Moving_Dr发布了新的文献求助10
30秒前
领导范儿应助zhou采纳,获得10
31秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082549
求助须知:如何正确求助?哪些是违规求助? 2735847
关于积分的说明 7539036
捐赠科研通 2385432
什么是DOI,文献DOI怎么找? 1264844
科研通“疑难数据库(出版商)”最低求助积分说明 612830
版权声明 597685