General structure-activity/selectivity relationship patterns for the inhibitors of the chemokine receptors (CCR1/CCR2/CCR4/CCR5) with application for virtual screening of PubChem database

公共化学 趋化因子受体 计算机科学 试验装置 CCR2型 人工智能 虚拟筛选 计算生物学 数量结构-活动关系 数据库 机器学习 数据挖掘 生物信息学 化学 受体 生物 药物发现 趋化因子 生物化学
作者
M Darsaraee,Sara Kaveh,Ahmad Mani-Varnosfaderani,Marzieh Sadat Neiband
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:: 1-19
标识
DOI:10.1080/07391102.2023.2248255
摘要

CC chemokine receptors (CCRs) form a crucial subfamily of G protein-linked receptors that play a distinct role in the onset and progression of various life-threatening diseases. The main aim of this research is to derive general structure-activity relationship (SAR) patterns to describe the selectivity and activity of CCR inhibitors. To this end, a total of 7332 molecules related to the inhibition of CCR1, CCR2, CCR4, and CCR5 were collected from the Binding Database and analyzed using machine learning techniques. A diverse set of 450 molecular descriptors was calculated for each molecule, and the molecules were classified based on their therapeutic targets and activities. The variable importance in the projection (VIP) approach was used to select discriminatory molecular features, and classification models were developed using supervised Kohonen networks (SKN) and counter-propagation artificial neural networks (CPANN). The reliability and predictability of the models were estimated using 10-fold cross-validation, an external validation set, and an applicability domain approach. We were able to identify different sets of molecular descriptors for discriminating between active and inactive molecules and model the selectivity of inhibitors towards different CCRs. The sensitivities of the predictions for the external test set for the SKN models ranged from 0.827-0.873. Finally, the developed classification models were used to screen approximately 2 million random molecules from the PubChem database, with average values for areas under the receiver operating characteristic curves ranging from 0.78-0.96 for SKN models and 0.75-0.89 for CPANN models.Communicated by Ramaswamy H. Sarma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助连烙采纳,获得10
1秒前
misong发布了新的文献求助10
2秒前
斯文败类应助Grace采纳,获得30
2秒前
能干的邹完成签到 ,获得积分10
2秒前
暴躁四叔应助kento采纳,获得50
2秒前
2秒前
武雨寒发布了新的文献求助10
3秒前
3秒前
在水一方应助Amadeus采纳,获得10
3秒前
3秒前
无花果应助。.。采纳,获得10
4秒前
Gao发布了新的文献求助10
4秒前
4秒前
只谈风月完成签到,获得积分10
5秒前
车代桃完成签到 ,获得积分10
5秒前
万能图书馆应助唯心如意采纳,获得10
5秒前
意意发布了新的文献求助10
6秒前
坚强的严青应助苏州河采纳,获得30
6秒前
6秒前
梓齊完成签到,获得积分10
7秒前
vvdd发布了新的文献求助10
8秒前
10秒前
Lyncus发布了新的文献求助10
10秒前
flymove完成签到,获得积分10
10秒前
11秒前
丁丁完成签到,获得积分10
11秒前
11秒前
11秒前
瞿选葵发布了新的文献求助10
11秒前
小马甲应助Distance采纳,获得10
12秒前
Gao完成签到,获得积分10
12秒前
13秒前
11111完成签到,获得积分10
15秒前
小蘑菇应助zmy采纳,获得10
15秒前
不吃折耳根完成签到,获得积分10
17秒前
18秒前
科目三应助vvdd采纳,获得10
19秒前
20秒前
威武寒珊完成签到,获得积分10
20秒前
20秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463229
求助须知:如何正确求助?哪些是违规求助? 3056638
关于积分的说明 9053048
捐赠科研通 2746497
什么是DOI,文献DOI怎么找? 1506946
科研通“疑难数据库(出版商)”最低求助积分说明 696243
邀请新用户注册赠送积分活动 695849