Real-Time Gearbox Defect Detection Using IIoT-Based Condition Monitoring System

停工期 可靠性 状态监测 故障排除 计算机科学 预测性维护 可靠性工程 分析 故障检测与隔离 状态维修 实时计算 工程类 风险分析(工程) 人工智能 数据挖掘 执行机构 电气工程 医学
作者
P. Sivaraman,P. Ilakiya,M.K. Prabhu,Adarsh Ajayan
出处
期刊:SAE technical paper series 被引量:1
标识
DOI:10.4271/2023-01-5057
摘要

<div class="section abstract"><div class="htmlview paragraph">In order to guarantee the dependability and effectiveness of industrial machinery, real-time gearbox malfunction detection is extremely important. Traditional approaches to condition monitoring systems sometimes rely on time-consuming human inspections or routine maintenance, which can result in unanticipated failures and expensive downtime. The rise of the industrial Internet of things (IIoT) in recent years has paved the way for more sophisticated and automated monitoring methods. An IIoT-based condition monitoring system is suggested in this study for real-time gearbox failure detection. The gearbox health state is continually monitored by the system using sensor data from the gearbox, such as temperature, vibration, and oil analysis. Real-time transmission of the gathered data is made to a central monitoring hub, where sophisticated analytics algorithms are used to look for any flaws.</div><div class="htmlview paragraph">This study’s potential to improve the dependability and operational effectiveness of industrial gear is what makes it so significant. Real-time defect identification makes it possible to undertake maintenance tasks preemptively, avoiding catastrophic failures and cutting down on downtime. This reduces not just the expenses of unanticipated maintenance but also boosts general productivity and client happiness. The uniqueness of this study comes from the way sophisticated analytics and IIoT technologies were used to find gearbox defects. Despite the literature’s exploration of IIoT-based condition monitoring systems, this work focuses especially on gearbox defect detection, which presents special difficulties because of complicated mechanical dynamics and the existence of several failure scenarios. The suggested methodology provides a thorough and automated method that can precisely identify and diagnose gearbox faults, leading to timely maintenance actions and increased operational reliability. Overall, employing IIoT-based condition monitoring, this work offers a unique and useful method for real-time gearbox failure diagnosis. The results of this study can help improve industrial maintenance procedures, which will enhance machinery performance and decrease downtime across a variety of industries, including manufacturing, energy, and transportation.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
源源源完成签到 ,获得积分10
刚刚
华仔应助123采纳,获得10
1秒前
11发布了新的文献求助10
1秒前
1秒前
CodeCraft应助就这样采纳,获得10
3秒前
4秒前
7秒前
顺利发表发布了新的文献求助10
9秒前
多多发布了新的文献求助30
9秒前
36456657应助Never stall采纳,获得10
9秒前
11完成签到,获得积分10
10秒前
兴奋的渊思完成签到,获得积分10
10秒前
哈哈哈完成签到 ,获得积分10
11秒前
13秒前
13秒前
14秒前
cannon8完成签到,获得积分10
15秒前
默默苑博发布了新的文献求助10
16秒前
16秒前
上官若男应助Magicbunny采纳,获得10
17秒前
小二郎应助沙漠西瓜皮采纳,获得10
17秒前
晴晴完成签到,获得积分10
18秒前
窦房结完成签到 ,获得积分10
19秒前
研二发核心完成签到,获得积分10
19秒前
天赋丸子发布了新的文献求助10
19秒前
传奇3应助独特棒棒糖采纳,获得10
20秒前
在学一会完成签到,获得积分10
21秒前
21秒前
orixero应助奔跑的小鹰采纳,获得10
21秒前
123发布了新的文献求助10
21秒前
21秒前
ric发布了新的文献求助10
22秒前
多多完成签到,获得积分10
22秒前
Hello应助你好晚安采纳,获得10
22秒前
fountainli发布了新的文献求助10
26秒前
28秒前
28秒前
天赋丸子完成签到,获得积分10
29秒前
29秒前
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308509
求助须知:如何正确求助?哪些是违规求助? 2941822
关于积分的说明 8506144
捐赠科研通 2616825
什么是DOI,文献DOI怎么找? 1429824
科研通“疑难数据库(出版商)”最低求助积分说明 663919
邀请新用户注册赠送积分活动 649040