亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel Exposed Coal Index Combining Flat Spectral Shape and Low Reflectance

煤矿开采 遥感 环境科学 计算机科学 采矿工程 比例(比率) 资源(消歧) 土地覆盖 地质学 土地利用 地理 工程类 地图学 计算机网络 土木工程 考古
作者
Xiaoquan Pan,Peng Zhang,Shanchuan Guo,Wei Zhang,Zilong Xia,Hong Fang,Peijun Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:6
标识
DOI:10.1109/tgrs.2023.3333568
摘要

Coal, as a traditional energy source, has made remarkable contributions to global economic development. However, surface coal mining brings a series of eco-environmental problems. Therefore, it is crucial to obtain the distribution information of coal mines. Due to the diverse appearance of coal mines and complex background environments, it is very challenging to identify coal mines at a large scale. Exposed coal is an important indicator of coal mining. Spectral indices based on satellite images possess the advantages of simplicity and high efficiency. In this study, the Exposed Coal Index (ECI) was proposed. It enables the accurate identification of exposed coal at a large scale. The effectiveness of the ECI was investigated in four typical surface coal mine distribution regions across the world. Through spectral analysis, two key characteristics of coal spectra were discovered (i.e., the flat spectral shape in the visible to near-infrared range and the low reflectance in the near-infrared band). The ECI utilized these two features to successfully differentiate coal from various background land cover types in all study cases. The results showed that the ECI was effective in visual evaluation, separability analysis, and coal mapping, with superior performance than the three previously proposed indices. The ECI can also be perfectly applied to Landsat 8 images, demonstrating its excellent generalization capability. In addition, compared with three global mining datasets, ECI provided more comprehensive information on coal mine distribution. The proposed ECI is simple, robust, and expected to provide strong support for regional resource management and sustainable development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
13秒前
1分钟前
max完成签到,获得积分10
1分钟前
1分钟前
英俊枫完成签到,获得积分10
1分钟前
1分钟前
2分钟前
爱静静应助kayee采纳,获得10
3分钟前
kayee完成签到,获得积分10
3分钟前
开心叫兽完成签到 ,获得积分10
3分钟前
明明发布了新的文献求助10
3分钟前
zhangjianzeng完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
何何发布了新的文献求助10
4分钟前
陈槊诸完成签到 ,获得积分10
4分钟前
4分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
Owen应助单身的夜云采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
7分钟前
YOLO发布了新的文献求助10
7分钟前
爱静静应助科研通管家采纳,获得10
7分钟前
爱静静应助科研通管家采纳,获得10
7分钟前
爱静静应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助jarrykim采纳,获得10
7分钟前
WZQ完成签到,获得积分10
7分钟前
7分钟前
单身的夜云完成签到,获得积分10
8分钟前
sdkabdrxt完成签到,获得积分10
8分钟前
liusen发布了新的文献求助10
9分钟前
今天开心吗完成签到 ,获得积分10
9分钟前
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
爱静静应助科研通管家采纳,获得10
9分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356868
求助须知:如何正确求助?哪些是违规求助? 2980468
关于积分的说明 8694464
捐赠科研通 2662169
什么是DOI,文献DOI怎么找? 1457611
科研通“疑难数据库(出版商)”最低求助积分说明 674843
邀请新用户注册赠送积分活动 665767