Tumor detection under cystoscopy with transformer-augmented deep learning algorithm

计算机科学 膀胱镜检查 深度学习 人工智能 膀胱癌 变压器 试验装置 编码器 棱锥(几何) 算法 模式识别(心理学) 癌症 医学 数学 病理 电压 物理 内科学 操作系统 量子力学 替代医学 几何学
作者
Jia Xiao,Eugene Shkolyar,Mark A Laurie,Okyaz Eminaga,Joseph C. Liao,Xing Li
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (16): 165013-165013
标识
DOI:10.1088/1361-6560/ace499
摘要

Abstract Objective. Accurate tumor detection is critical in cystoscopy to improve bladder cancer resection and decrease recurrence. Advanced deep learning algorithms hold the potential to improve the performance of standard white-light cystoscopy (WLC) in a noninvasive and cost-effective fashion. The purpose of this work is to develop a cost-effective, transformer-augmented deep learning algorithm for accurate detection of bladder tumors in WLC and to assess its performance on archived patient data. Approach. ‘CystoNet-T’, a deep learning-based bladder tumor detector, was developed with a transformer-augmented pyramidal CNN architecture to improve automated tumor detection of WLC. CystoNet-T incorporated the self-attention mechanism by attaching transformer encoder modules to the pyramidal layers of the feature pyramid network (FPN), and obtained multi-scale activation maps with global features aggregation. Features resulting from context augmentation served as the input to a region-based detector to produce tumor detection predictions. The training set was constructed by 510 WLC frames that were obtained from cystoscopy video sequences acquired from 54 patients. The test set was constructed based on 101 images obtained from WLC sequences of 13 patients. Main results. CystoNet-T was evaluated on the test set with 96.4 F1 and 91.4 AP (Average Precision). This result improved the benchmark of Faster R-CNN and YOLO by 7.3 points in F1 and 3.8 points in AP. The improvement is attributed to the strong ability of global attention of CystoNet-T and better feature learning of the pyramids architecture throughout the training. The model was found to be particularly effective in highlighting the foreground information for precise localization of the true positives while favorably avoiding false alarms Significance. We have developed a deep learning algorithm that accurately detects bladder tumors in WLC. Transformer-augmented AI framework promises to aid in clinical decision-making for improved bladder cancer diagnosis and therapeutic guidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
yuan发布了新的文献求助20
3秒前
深情安青应助wang采纳,获得10
3秒前
Jasper应助水木年华采纳,获得10
3秒前
Lucas应助梨老师采纳,获得10
3秒前
小芃应助111采纳,获得10
5秒前
5秒前
哈哈哈完成签到,获得积分10
6秒前
huhuhuuh完成签到,获得积分10
6秒前
洛洛发布了新的文献求助10
7秒前
草草完成签到,获得积分10
7秒前
dux完成签到,获得积分10
8秒前
9秒前
丘比特应助小粽子采纳,获得10
10秒前
爆米花应助Zephyr采纳,获得10
11秒前
XKINGLEE发布了新的文献求助10
11秒前
12秒前
坚强钢笔完成签到,获得积分20
12秒前
水木年华发布了新的文献求助10
13秒前
14秒前
14秒前
LXZ完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
CodeCraft应助coco采纳,获得10
15秒前
17秒前
caoyulongchn完成签到,获得积分10
17秒前
xiaozhang发布了新的文献求助10
17秒前
17秒前
风中子轩发布了新的文献求助14
18秒前
念白发布了新的文献求助10
18秒前
水草帽完成签到 ,获得积分10
18秒前
LL完成签到,获得积分10
18秒前
19秒前
daidai完成签到,获得积分10
20秒前
英俊的筝完成签到,获得积分10
20秒前
香蕉觅云应助龍Ryu采纳,获得10
20秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328542
求助须知:如何正确求助?哪些是违规求助? 2958550
关于积分的说明 8590968
捐赠科研通 2636861
什么是DOI,文献DOI怎么找? 1443215
科研通“疑难数据库(出版商)”最低求助积分说明 668574
邀请新用户注册赠送积分活动 655842