Three steps towards dose optimization for oncology dose finding

最大耐受剂量 医学 药代动力学 药物开发 临床试验 药效学 药品 选择(遗传算法) 药理学 肿瘤科 计算机科学 内科学 机器学习
作者
Jason J. Z. Liao,Ekaterine Asatiani,Qingyang Liu,Kevin Hou
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2309.15333
摘要

Traditional dose selection for oncology registration trials typically employs a one- or two-step single maximum tolerated dose (MTD) approach. However, this approach may not be appropriate for molecularly targeted therapy that tends to have toxicity profiles that are markedly different to cytotoxic agents. The US Food and Drug Administration launched Project Optimus to reform dose optimization in oncology drug development and has recently released a related Guidance for Industry. In response to these initiatives, we propose a "three steps towards dose optimization" procedure and discuss the details in dose optimization designs and analyses in this manuscript. The first step is dose-escalation to identify the MTD or maximum administered dose with an efficient hybrid design, which can offer good overdose control and increases the likelihood of the recommended MTD being close to the true MTD. The second step is the selection of appropriate recommended doses for expansion (RDEs), based on all available data including emerging safety, pharmacokinetics, pharmacodynamics, and other biomarker information. The third step is dose optimization, which uses data from a randomized fractional factorial design with multiple RDEs explored in multiple tumor cohorts during the expansion phase to ensure a feasible dose is selected for registration trials, and that the tumor type most sensitive to the investigative treatment is identified. We believe using this three-step approach can increase the likelihood of selecting the optimal dose for registration trial, one that demonstrates a balanced safety profile while retaining much of the efficacy observed at the MTD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
kylin发布了新的文献求助10
刚刚
1秒前
辣子鱼完成签到,获得积分10
1秒前
orixero应助super采纳,获得10
1秒前
2秒前
web123完成签到,获得积分10
2秒前
2秒前
典雅涵瑶完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
威武灵阳完成签到,获得积分10
4秒前
王海祥完成签到 ,获得积分10
4秒前
研友_VZG7GZ应助gao采纳,获得10
4秒前
yolanda_ji完成签到,获得积分10
4秒前
和谐以冬完成签到 ,获得积分10
5秒前
陆崧瀚发布了新的文献求助10
6秒前
6秒前
nalaaaa发布了新的文献求助30
6秒前
小先生发布了新的文献求助10
7秒前
打打应助liang采纳,获得10
7秒前
彭于晏应助健壮洋葱采纳,获得10
8秒前
8秒前
石烟祝完成签到,获得积分10
9秒前
Jasper应助nianlu采纳,获得10
10秒前
科研通AI6应助昏睡的觅露采纳,获得10
10秒前
lpk发布了新的文献求助10
10秒前
NexusExplorer应助FYA采纳,获得10
11秒前
11秒前
12秒前
大方海燕发布了新的文献求助10
12秒前
哒丝萌德完成签到,获得积分10
12秒前
Shu舒完成签到,获得积分10
12秒前
充电宝应助dachang采纳,获得10
13秒前
Dawn_ZZZ给Dawn_ZZZ的求助进行了留言
13秒前
shhoing应助孔雀吃披萨采纳,获得10
14秒前
田様应助zxm采纳,获得10
14秒前
super发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552469
求助须知:如何正确求助?哪些是违规求助? 4637218
关于积分的说明 14648146
捐赠科研通 4579088
什么是DOI,文献DOI怎么找? 2511302
邀请新用户注册赠送积分活动 1486474
关于科研通互助平台的介绍 1457556