Sparse Federated Learning With Hierarchical Personalization Models

计算机科学 云计算 个性化 加速 收敛速度 趋同(经济学) 无线 强化学习 分布式计算 机器学习 计算机网络 并行计算 万维网 电信 频道(广播) 经济 经济增长 操作系统
作者
Xiaofeng Liu,Qing Wang,Yunfeng Shao,Yinchuan Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 8539-8551 被引量:4
标识
DOI:10.1109/jiot.2023.3318647
摘要

Federated learning (FL) can achieve privacy-safe and reliable collaborative training without collecting users' private data. Its excellent privacy security potential promotes a wide range of federated learning (FL) applications in Internet of Things (IoT), wireless networks, mobile devices, autonomous vehicles, and cloud medical treatment. However, the FL method suffers from poor model performance on non-independent and identically distributed (non-i.i.d.) data and excessive traffic volume. To this end, we propose a personalized FL algorithm using a hierarchical proximal mapping based on the moreau envelop, named sparse federated learning with hierarchical personalized models (sFedHP), which significantly improves the acrlong GM performance facing diverse data. A continuously differentiable approximated $\ell _{1}$ -norm is also used as the sparse constraint to reduce the communication cost. Convergence analysis shows that sFedHP's convergence rate is state-of-the-art with linear speedup and the sparse constraint only reduces the convergence rate to a small extent while significantly reducing the communication cost. Experimentally, we demonstrate the benefits of sFedHP compared with the federated averaging (FedAvg), hierarchical fedavg (HierFAVG), and personalized FL methods based on local customization, including FedAMP, FedProx, per- FedAvg, pFedMe, and pFedGP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tong发布了新的文献求助10
1秒前
hans完成签到,获得积分20
1秒前
2秒前
tang完成签到 ,获得积分10
3秒前
4秒前
123完成签到,获得积分10
5秒前
烂漫幼枫发布了新的文献求助10
5秒前
酷酷珠发布了新的文献求助10
7秒前
内向的小蚂蚁完成签到,获得积分20
8秒前
8秒前
9秒前
zai发布了新的文献求助10
10秒前
zhang发布了新的文献求助10
10秒前
文静的雁露完成签到 ,获得积分20
11秒前
小袁同学发布了新的文献求助80
11秒前
12秒前
依琬应助Jason采纳,获得60
13秒前
13秒前
香蕉觅云应助CLL采纳,获得10
13秒前
13秒前
yzhang发布了新的文献求助10
15秒前
15秒前
良辰应助lin采纳,获得10
17秒前
852应助Lila采纳,获得10
18秒前
小高完成签到,获得积分10
18秒前
桐桐应助ldj6670采纳,获得10
20秒前
一只喵发布了新的文献求助10
20秒前
zho发布了新的文献求助10
21秒前
充电宝应助开心千青采纳,获得10
21秒前
22秒前
22秒前
23秒前
26秒前
xiaofg发布了新的文献求助10
27秒前
一只喵完成签到,获得积分10
28秒前
mygod发布了新的文献求助10
28秒前
cocolu应助jisimyang98采纳,获得10
29秒前
30秒前
32秒前
风中凡霜完成签到,获得积分10
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Cognitive Paradigms in Knowledge Organisation 500
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306889
求助须知:如何正确求助?哪些是违规求助? 2940724
关于积分的说明 8498169
捐赠科研通 2614869
什么是DOI,文献DOI怎么找? 1428544
科研通“疑难数据库(出版商)”最低求助积分说明 663445
邀请新用户注册赠送积分活动 648283