Deep Multi-Exposure Image Fusion for Dynamic Scenes

计算机科学 人工智能 重影 计算机视觉 图像融合 水准点(测量) 光学(聚焦) 图像(数学) 融合 编码(集合论) 深度学习 光学 物理 哲学 语言学 集合(抽象数据类型) 程序设计语言 地理 大地测量学
作者
Xiao Tan,Huaian Chen,Rui Zhang,Qihan Wang,Yan Kan,Jinjin Zheng,Yi Jin,Enhong Chen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 5310-5325 被引量:6
标识
DOI:10.1109/tip.2023.3315123
摘要

Recently, learning-based multi-exposure fusion (MEF) methods have made significant improvements. However, these methods mainly focus on static scenes and are prone to generate ghosting artifacts when tackling a more common scenario, i.e., the input images include motion, due to the lack of a benchmark dataset and solution for dynamic scenes. In this paper, we fill this gap by creating an MEF dataset of dynamic scenes, which contains multi-exposure image sequences and their corresponding high-quality reference images. To construct such a dataset, we propose a 'static-for-dynamic' strategy to obtain multi-exposure sequences with motions and their corresponding reference images. To the best of our knowledge, this is the first MEF dataset of dynamic scenes. Correspondingly, we propose a deep dynamic MEF (DDMEF) framework to reconstruct a ghost-free high-quality image from only two differently exposed images of a dynamic scene. DDMEF is achieved through two steps: pre-enhancement-based alignment and privilege-information-guided fusion. The former pre-enhances the input images before alignment, which helps to address the misalignments caused by the significant exposure difference. The latter introduces a privilege distillation scheme with an information attention transfer loss, which effectively improves the deghosting ability of the fusion network. Extensive qualitative and quantitative experimental results show that the proposed method outperforms state-of-the-art dynamic MEF methods. The source code and dataset are released at https://github.com/Tx000/Deep_dynamicMEF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kai完成签到,获得积分10
刚刚
mmyhn发布了新的文献求助10
刚刚
小七完成签到,获得积分10
1秒前
坦率的香烟完成签到,获得积分10
1秒前
1秒前
YH完成签到,获得积分10
1秒前
屁王发布了新的文献求助10
1秒前
1秒前
郭翔完成签到,获得积分10
2秒前
情怀应助端庄白开水采纳,获得10
2秒前
2秒前
zwd完成签到,获得积分10
3秒前
15327432191完成签到 ,获得积分10
3秒前
4秒前
秋雅完成签到,获得积分10
4秒前
5秒前
enchanted完成签到 ,获得积分10
5秒前
樱桃小热巴完成签到 ,获得积分10
5秒前
5秒前
6秒前
焦爽发布了新的文献求助10
6秒前
功夫熊猫发布了新的文献求助10
6秒前
花道完成签到,获得积分10
6秒前
tong童完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
Owen应助百汇科研采纳,获得10
7秒前
xs应助百汇科研采纳,获得10
7秒前
CodeCraft应助秋雅采纳,获得10
7秒前
小蘑菇应助zwd采纳,获得10
7秒前
8秒前
fym发布了新的文献求助10
8秒前
纸鸢发布了新的文献求助10
9秒前
包容友儿完成签到,获得积分10
9秒前
meimale完成签到,获得积分10
9秒前
9秒前
9秒前
周沛发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Fault identification method of electrical automation distribution equipment in distribution networks based on neural network 560
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3580842
求助须知:如何正确求助?哪些是违规求助? 3150442
关于积分的说明 9482671
捐赠科研通 2852107
什么是DOI,文献DOI怎么找? 1568038
邀请新用户注册赠送积分活动 734363
科研通“疑难数据库(出版商)”最低求助积分说明 720600