A Life-Cycle of Ni in Proton Exchange Membrane Fuel Cells

催化作用 质子交换膜燃料电池 材料科学 铂金 化学工程 纳米颗粒 溶解 氧烷 浸出(土壤学) 醇盐 冶金 纳米技术 化学 有机化学 生物化学 物理 环境科学 量子力学 光谱学 土壤科学 工程类 土壤水分
作者
Michal Ronovský,Mila Myllymäki,Shlomi Polani,Olivia Dunseath,Peter Kúš,Lujin Pan,Malte Klingenhof,Daniel C. G. Götz,Jan Kubát,Tomáš Hrbek,Lukáš Fusek,Fabio Dionigi,Marta Mirolo,Isaac Martens,Raphaël Chattot,Martha Briceno de Gutierrez,Emily Brooke,Jonathan Sharman,Peter Strasser,Alejandro M. Bonastre,Jakub Drnec
出处
期刊:Meeting abstracts 卷期号:MA2023-01 (38): 2277-2277
标识
DOI:10.1149/ma2023-01382277mtgabs
摘要

The usage of Proton Exchange Membrane Fuel Cells (PEMFCs) in the automotive industry is currently limited by the price, performance, and durability of a platinum catalyst. Alloying with nickel provides lower cost and enhances activity. However, the membrane electrode assembly (MEA) performance is, in practice, much lower than expected from liquid laboratory experiments on the catalyst layer. One of the identified issues is Ni leaching from nanoparticles (NPs) and subsequent Ni poisoning of the Nafion membrane. Here, we use Wide-Angle X-ray Scattering (WAXS) and X-ray Absorption Near-Edge Structure (XANES) to follow Ni dissolution from the catalyst layer and its movement in the MEA. We shine (synchrotron) light on the full life cycle of Ni, starting from (i) characterization of the catalyst powder, followed by (ii) the changes in catalyst composition during the ink-making process and (iii) membrane coating and finishing with (iv) NP characterization and Ni tracking during the operation of MEAs. Proper incorporation of PtNi catalyst requires modification of all the aforementioned steps that are otherwise well optimized for pure Pt catalyst. It is even more critical for shape-controlled octahedra (oh) PtNi NPs as their activity is closely related to their structure [1]. Highly active oh-PtNi NPs are usually made from precursors such as Nickel(II) bis(acetylacetonate). Using EDX, we find precursor residues in catalyst powders that dissolve upon further processing and add to membrane poisoning. We conclude that we need to develop a cleaning protocol that would remove all Ni residue while retaining the nanoparticle shape. During ink-making, high ionomer concentrations and elevated temperatures promote Ni dissolution from the catalyst, which can, in turn, poison the membrane even before the MEA is put in use. With the WAXS technique, we track the dissolution during ink-making and MEA operation by following changes in lattice parameter, showing the dynamics and the extent of Ni dissolution in each step of aging. Furthermore, we use angle-resolved XANES to track the movement of dissolved Ni. We show that Ni ions are getting reduced back to metallic form within the MEA, likely due to hydrogen crossover. The presence of such a metal band in the membrane blocks proton conductivity and decreases performance [2]. That is why it is crucial to set manufacturing and operational boundaries to prevent dissolution. For this reason, we follow WAXS total scattering intensity during oxidation and reduction cycles to understand the Ni dissolution dynamics during operation. We find that limiting both upper and lower potential cycling limits greatly reduces the redox extent and subsequent dissolution. It is, therefore, possible to find and understand the trade-off between high power density and dissolution in operational cells. Even though this work looks at the Ni life cycle, the presented techniques and conclusions are transferable to all multimetallic high-performance PEMFC catalysts. References: [1] Shlomi Polani et al. ACS Appl. Mater. Interfaces 2022, 14, 26, 29690–29702 [2] Wu Bi et al. Electrochem. Solid-State Lett. 2007 10 B101 Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助王子恒采纳,获得10
1秒前
1秒前
4652376完成签到 ,获得积分0
1秒前
yyy完成签到,获得积分10
3秒前
球闪发布了新的文献求助10
4秒前
谦让夏云完成签到,获得积分10
5秒前
donzang完成签到,获得积分10
5秒前
5秒前
风屿完成签到,获得积分10
5秒前
脑洞疼应助忧心的不言采纳,获得10
5秒前
小青椒应助wqr采纳,获得30
6秒前
周老八发布了新的文献求助10
7秒前
彩色的谷兰完成签到,获得积分10
7秒前
8秒前
球闪完成签到,获得积分10
8秒前
adeno发布了新的文献求助10
9秒前
领导范儿应助小易采纳,获得10
9秒前
11秒前
好好学习完成签到,获得积分10
12秒前
王钟萱完成签到,获得积分10
12秒前
结实白柏发布了新的文献求助10
12秒前
FashionBoy应助拼搏的从雪采纳,获得10
12秒前
MelonWong发布了新的文献求助10
13秒前
心安完成签到,获得积分10
13秒前
15秒前
15秒前
16秒前
17秒前
1111完成签到,获得积分20
17秒前
斯文败类应助homeland采纳,获得10
18秒前
nan完成签到,获得积分10
18秒前
baidu发布了新的文献求助10
19秒前
慕青应助Viper3采纳,获得30
20秒前
思源应助忧心的襄采纳,获得10
21秒前
252525发布了新的文献求助10
21秒前
22秒前
24秒前
深情安青应助结实白柏采纳,获得30
25秒前
刘泗青应助杨洋采纳,获得10
25秒前
26秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215340
求助须知:如何正确求助?哪些是违规求助? 4390475
关于积分的说明 13670085
捐赠科研通 4252359
什么是DOI,文献DOI怎么找? 2333057
邀请新用户注册赠送积分活动 1330667
关于科研通互助平台的介绍 1284488