Clinically oriented prediction of patient response to targeted and immunotherapies from the tumor transcriptome

医学 临床试验 转录组 肿瘤科 内科学 癌症 生物信息学 基因 基因表达 生物 生物化学
作者
Gal Dinstag,Eldad D. Shulman,Efrat Elis,Doreen S. Ben-Zvi,Omer Tirosh,Eden Maimon,Isaac Meilijson,Emmanuel Elalouf,Boris Temkin,Philipp Vitkovsky,Eyal Schiff,Don Hoang,Sanju Sinha,Nishanth Ulhas Nair,Joo Sang Lee,Alejandro A. Schäffer,Ze’ev A. Ronai,Dejan Juric,Andrea B. Apolo,William L. Dahut,Stanley Lipkowitz,Raanan Berger,Razelle Kurzrock,Antonios Papanicolau‐Sengos,Fatima Karzai,Mark R. Gilbert,Kenneth Aldape,Padma Sheila Rajagopal,Tuvik Beker,Fiorella Schischlik,Ranit Aharonov
出处
期刊:Med [Elsevier]
卷期号:4 (1): 15-30.e8 被引量:17
标识
DOI:10.1016/j.medj.2022.11.001
摘要

BackgroundPrecision oncology is gradually advancing into mainstream clinical practice, demonstrating significant survival benefits. However, eligibility and response rates remain limited in many cases, calling for better predictive biomarkers.MethodsWe present ENLIGHT, a transcriptomics-based computational approach that identifies clinically relevant genetic interactions and uses them to predict a patient's response to a variety of therapies in multiple cancer types without training on previous treatment response data. We study ENLIGHT in two translationally oriented scenarios: personalized oncology (PO), aimed at prioritizing treatments for a single patient, and clinical trial design (CTD), selecting the most likely responders in a patient cohort.FindingsEvaluating ENLIGHT's performance on 21 blinded clinical trial datasets in the PO setting, we show that it can effectively predict a patient's treatment response across multiple therapies and cancer types. Its prediction accuracy is better than previously published transcriptomics-based signatures and is comparable with that of supervised predictors developed for specific indications and drugs. In combination with the interferon-γ signature, ENLIGHT achieves an odds ratio larger than 4 in predicting response to immune checkpoint therapy. In the CTD scenario, ENLIGHT can potentially enhance clinical trial success for immunotherapies and other monoclonal antibodies by excluding non-responders while overall achieving more than 90% of the response rate attainable under an optimal exclusion strategy.ConclusionsENLIGHT demonstrably enhances the ability to predict therapeutic response across multiple cancer types from the bulk tumor transcriptome.FundingThis research was supported in part by the Intramural Research Program, NIH and by the Israeli Innovation Authority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助优秀的念双采纳,获得10
刚刚
林林总尔尔完成签到,获得积分20
刚刚
wure10完成签到 ,获得积分10
2秒前
2秒前
Angie完成签到,获得积分20
3秒前
通达完成签到,获得积分10
3秒前
3秒前
5秒前
行者无疆完成签到,获得积分10
7秒前
Angie发布了新的文献求助30
7秒前
得到发布了新的文献求助30
8秒前
Vincent1990完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
超级仇天发布了新的文献求助10
10秒前
大锤哥完成签到,获得积分10
10秒前
琢钰发布了新的文献求助10
11秒前
12秒前
朱大帅完成签到,获得积分10
13秒前
鲍尔槐发布了新的文献求助10
13秒前
13秒前
14秒前
美海与鱼完成签到,获得积分10
14秒前
Jzx发布了新的文献求助10
14秒前
婉莹完成签到 ,获得积分0
15秒前
湖里发布了新的文献求助10
15秒前
15秒前
spiritpope发布了新的文献求助10
16秒前
16秒前
秋风今是完成签到 ,获得积分10
17秒前
超级冰露发布了新的文献求助10
18秒前
wos完成签到,获得积分10
18秒前
Muccio完成签到 ,获得积分10
19秒前
20秒前
我是老大应助yanjiuhuzu采纳,获得10
21秒前
21秒前
22秒前
TiY完成签到 ,获得积分10
22秒前
爱静静应助狐妖采纳,获得30
23秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242146
求助须知:如何正确求助?哪些是违规求助? 2886591
关于积分的说明 8243909
捐赠科研通 2555131
什么是DOI,文献DOI怎么找? 1383250
科研通“疑难数据库(出版商)”最低求助积分说明 649672
邀请新用户注册赠送积分活动 625469