Transformer‐optimized generation, detection, and tracking network for images with drainage pipeline defects

变压器 管道(软件) 管道运输 卷积神经网络 计算机科学 排水 特征提取 人工神经网络 模式识别(心理学) 人工智能 计算机视觉 实时计算 工程类 电气工程 电压 环境工程 生物 生态学 程序设计语言
作者
Duo Ma,Hongyuan Fang,Niannian Wang,Hongfang Lü,John C. Matthews,Chao Zhang
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:38 (15): 2109-2127 被引量:50
标识
DOI:10.1111/mice.12970
摘要

Abstract Regular detection of defects in drainage pipelines is crucial. However, some problems associated with pipeline defect detection, such as data scarcity and defect counting difficulty, need to be addressed. Therefore, a Transformer‐optimized generation, detection, and counting method for drainage‐pipeline defects was established in this paper. First, a generation network called Trans‐GAN‐Cla was developed for data augmentation. A classification network was trained to improve the quality of the generated images. Second, a detection and tracking model called Trans‐Det‐Tra was developed to track and count the number of defects. Third, the feature extraction capability of the proposed method was improved by leveraging Transformers. Compared with some well‐known convolutional neural network‐based methods, the proposed network achieved the best classification and detection accuracies of 87.2% and 87.57%, respectively. Furthermore, the F 1 scores were 87.7% and 91.9%. Finally, two pieces of onsite videos were detected and tracked, and the numbers of misalignments and obstacles were accurately counted. The results indicate that the established Transformer‐optimized method can generate high‐quality images and realize the high‐accuracy detection and counting of drainage pipeline defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助程风破浪采纳,获得10
2秒前
慕青应助快乐科学家采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
七点半起床喝酒完成签到,获得积分20
5秒前
5秒前
lwt发布了新的文献求助10
5秒前
小张z完成签到,获得积分10
7秒前
王小丹完成签到,获得积分10
7秒前
赘婿应助而非哈随哈桑采纳,获得10
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
哈哈发布了新的文献求助10
8秒前
爆爆完成签到,获得积分10
8秒前
11111完成签到,获得积分20
8秒前
Jasper应助冷静白亦采纳,获得10
9秒前
拉普拉斯妖完成签到,获得积分10
10秒前
谢志超发布了新的文献求助10
11秒前
13981592626发布了新的文献求助10
12秒前
13981592626发布了新的文献求助10
12秒前
13981592626发布了新的文献求助10
12秒前
13981592626发布了新的文献求助10
12秒前
零零发布了新的文献求助10
13秒前
mirror关注了科研通微信公众号
15秒前
16秒前
调皮小蘑菇完成签到,获得积分10
19秒前
谢志超完成签到,获得积分10
19秒前
谢鸿宇完成签到,获得积分10
21秒前
21秒前
玺白白发布了新的文献求助10
21秒前
科研通AI5应助soyorin采纳,获得10
21秒前
22秒前
22秒前
25秒前
yy应助爱听歌的书双采纳,获得10
25秒前
科研通AI5应助迅速的鸽子采纳,获得10
25秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133459
求助须知:如何正确求助?哪些是违规求助? 4334575
关于积分的说明 13504156
捐赠科研通 4171584
什么是DOI,文献DOI怎么找? 2287247
邀请新用户注册赠送积分活动 1288151
关于科研通互助平台的介绍 1228995