亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transformer‐optimized generation, detection, and tracking network for images with drainage pipeline defects

变压器 管道(软件) 管道运输 卷积神经网络 计算机科学 排水 特征提取 人工神经网络 模式识别(心理学) 人工智能 计算机视觉 实时计算 工程类 电气工程 电压 环境工程 生物 生态学 程序设计语言
作者
Duo Ma,Hongyuan Fang,Niannian Wang,Hongfang Lü,John C. Matthews,Chao Zhang
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:38 (15): 2109-2127 被引量:78
标识
DOI:10.1111/mice.12970
摘要

Abstract Regular detection of defects in drainage pipelines is crucial. However, some problems associated with pipeline defect detection, such as data scarcity and defect counting difficulty, need to be addressed. Therefore, a Transformer‐optimized generation, detection, and counting method for drainage‐pipeline defects was established in this paper. First, a generation network called Trans‐GAN‐Cla was developed for data augmentation. A classification network was trained to improve the quality of the generated images. Second, a detection and tracking model called Trans‐Det‐Tra was developed to track and count the number of defects. Third, the feature extraction capability of the proposed method was improved by leveraging Transformers. Compared with some well‐known convolutional neural network‐based methods, the proposed network achieved the best classification and detection accuracies of 87.2% and 87.57%, respectively. Furthermore, the F 1 scores were 87.7% and 91.9%. Finally, two pieces of onsite videos were detected and tracked, and the numbers of misalignments and obstacles were accurately counted. The results indicate that the established Transformer‐optimized method can generate high‐quality images and realize the high‐accuracy detection and counting of drainage pipeline defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勇毅前行发布了新的文献求助10
刚刚
没见云发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
2秒前
科目三应助leemiii采纳,获得10
17秒前
平淡冷发布了新的文献求助10
22秒前
Akim应助Guozixin采纳,获得10
24秒前
勇毅前行完成签到,获得积分10
26秒前
30秒前
37秒前
liyang完成签到,获得积分20
40秒前
PP发布了新的文献求助10
42秒前
53秒前
57秒前
Lee发布了新的文献求助10
59秒前
踏实孤容发布了新的文献求助10
1分钟前
1分钟前
Hayat发布了新的文献求助30
1分钟前
CodeCraft应助小鱼采纳,获得10
1分钟前
Akim应助石榴汁的书采纳,获得10
1分钟前
1分钟前
1分钟前
Owen应助f0rest采纳,获得10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
小鱼发布了新的文献求助10
1分钟前
1分钟前
秦时明月发布了新的文献求助10
1分钟前
1分钟前
yyyyy发布了新的文献求助10
1分钟前
星辰大海应助yyyyy采纳,获得10
1分钟前
1分钟前
2分钟前
华仔应助踏实孤容采纳,获得50
2分钟前
搜集达人应助石榴汁的书采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
Hayat发布了新的文献求助30
2分钟前
小鱼发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755305
求助须知:如何正确求助?哪些是违规求助? 5493226
关于积分的说明 15381070
捐赠科研通 4893471
什么是DOI,文献DOI怎么找? 2632125
邀请新用户注册赠送积分活动 1579966
关于科研通互助平台的介绍 1535776