Transformer‐optimized generation, detection, and tracking network for images with drainage pipeline defects

变压器 管道(软件) 管道运输 卷积神经网络 计算机科学 排水 特征提取 人工神经网络 模式识别(心理学) 人工智能 计算机视觉 实时计算 工程类 电气工程 电压 环境工程 生物 生态学 程序设计语言
作者
Duo Ma,Hongyuan Fang,Niannian Wang,Hongfang Lü,John C. Matthews,Chao Zhang
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:38 (15): 2109-2127 被引量:78
标识
DOI:10.1111/mice.12970
摘要

Abstract Regular detection of defects in drainage pipelines is crucial. However, some problems associated with pipeline defect detection, such as data scarcity and defect counting difficulty, need to be addressed. Therefore, a Transformer‐optimized generation, detection, and counting method for drainage‐pipeline defects was established in this paper. First, a generation network called Trans‐GAN‐Cla was developed for data augmentation. A classification network was trained to improve the quality of the generated images. Second, a detection and tracking model called Trans‐Det‐Tra was developed to track and count the number of defects. Third, the feature extraction capability of the proposed method was improved by leveraging Transformers. Compared with some well‐known convolutional neural network‐based methods, the proposed network achieved the best classification and detection accuracies of 87.2% and 87.57%, respectively. Furthermore, the F 1 scores were 87.7% and 91.9%. Finally, two pieces of onsite videos were detected and tracked, and the numbers of misalignments and obstacles were accurately counted. The results indicate that the established Transformer‐optimized method can generate high‐quality images and realize the high‐accuracy detection and counting of drainage pipeline defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科研小白完成签到,获得积分10
1秒前
JamesPei应助舒心的向卉采纳,获得10
1秒前
雪山发布了新的文献求助10
2秒前
3秒前
犹豫友桃完成签到,获得积分10
3秒前
研友_V8RDYn完成签到,获得积分10
3秒前
星辰大海应助ztq采纳,获得10
4秒前
小阙123发布了新的文献求助10
4秒前
4秒前
tangtang发布了新的文献求助10
4秒前
无极微光应助孤独的心锁采纳,获得20
5秒前
量子星尘发布了新的文献求助10
5秒前
XS_QI发布了新的文献求助10
6秒前
深情安青应助laruijoint采纳,获得10
7秒前
7秒前
王小小发布了新的文献求助10
8秒前
428完成签到,获得积分10
8秒前
10秒前
10秒前
Atopos发布了新的文献求助10
10秒前
11秒前
情怀应助hahaha采纳,获得10
11秒前
SciGPT应助小阙123采纳,获得30
11秒前
11秒前
14秒前
14秒前
15秒前
16秒前
梦溪网络发布了新的文献求助10
16秒前
zz发布了新的文献求助10
17秒前
Archer完成签到,获得积分10
17秒前
18秒前
风信子deon01完成签到,获得积分10
18秒前
水文小白发布了新的文献求助10
19秒前
万安安完成签到,获得积分10
19秒前
Yu发布了新的文献求助10
21秒前
嘻嘻发布了新的文献求助10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571935
求助须知:如何正确求助?哪些是违规求助? 4657106
关于积分的说明 14719349
捐赠科研通 4597960
什么是DOI,文献DOI怎么找? 2523475
邀请新用户注册赠送积分活动 1494279
关于科研通互助平台的介绍 1464385