Transformer‐optimized generation, detection, and tracking network for images with drainage pipeline defects

变压器 管道(软件) 管道运输 卷积神经网络 计算机科学 排水 特征提取 人工神经网络 模式识别(心理学) 人工智能 计算机视觉 实时计算 工程类 电气工程 电压 环境工程 生物 生态学 程序设计语言
作者
Duo Ma,Hongyuan Fang,Niannian Wang,Hongfang Lü,John C. Matthews,Chao Zhang
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:38 (15): 2109-2127 被引量:50
标识
DOI:10.1111/mice.12970
摘要

Abstract Regular detection of defects in drainage pipelines is crucial. However, some problems associated with pipeline defect detection, such as data scarcity and defect counting difficulty, need to be addressed. Therefore, a Transformer‐optimized generation, detection, and counting method for drainage‐pipeline defects was established in this paper. First, a generation network called Trans‐GAN‐Cla was developed for data augmentation. A classification network was trained to improve the quality of the generated images. Second, a detection and tracking model called Trans‐Det‐Tra was developed to track and count the number of defects. Third, the feature extraction capability of the proposed method was improved by leveraging Transformers. Compared with some well‐known convolutional neural network‐based methods, the proposed network achieved the best classification and detection accuracies of 87.2% and 87.57%, respectively. Furthermore, the F 1 scores were 87.7% and 91.9%. Finally, two pieces of onsite videos were detected and tracked, and the numbers of misalignments and obstacles were accurately counted. The results indicate that the established Transformer‐optimized method can generate high‐quality images and realize the high‐accuracy detection and counting of drainage pipeline defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjw应助W66采纳,获得10
刚刚
嘻嘻完成签到,获得积分10
刚刚
WATQ完成签到,获得积分10
刚刚
Incubus完成签到,获得积分10
1秒前
江洋小偷完成签到,获得积分10
1秒前
复杂大象完成签到,获得积分10
2秒前
Gavin完成签到,获得积分10
2秒前
陌上尘开完成签到 ,获得积分10
2秒前
LAYWL发布了新的文献求助10
2秒前
zmmm发布了新的文献求助10
2秒前
共享精神应助yuanjingnan采纳,获得10
2秒前
李kazuya完成签到 ,获得积分10
3秒前
江洋小偷发布了新的文献求助10
3秒前
4秒前
Raymond完成签到,获得积分0
4秒前
4秒前
5秒前
108实验室完成签到,获得积分20
5秒前
5秒前
清爽伯云完成签到,获得积分10
6秒前
Lucas应助无糖零脂采纳,获得10
6秒前
6秒前
图灵桑完成签到,获得积分10
6秒前
啦啦啦德玛西亚完成签到,获得积分10
7秒前
CodeCraft应助Ava采纳,获得10
7秒前
爱笑的之槐完成签到 ,获得积分10
8秒前
ESTHERDY完成签到 ,获得积分10
8秒前
yyyyyge发布了新的文献求助20
8秒前
不想干活应助美好斓采纳,获得10
8秒前
未晚完成签到,获得积分10
9秒前
邱梓铭完成签到,获得积分10
9秒前
10秒前
DD完成签到,获得积分10
10秒前
zmmm完成签到,获得积分10
11秒前
11秒前
陌上尘开发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
星辰大海应助warburg采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615303
求助须知:如何正确求助?哪些是违规求助? 4019099
关于积分的说明 12440991
捐赠科研通 3702052
什么是DOI,文献DOI怎么找? 2041414
邀请新用户注册赠送积分活动 1074129
科研通“疑难数据库(出版商)”最低求助积分说明 957743