Transformer‐optimized generation, detection, and tracking network for images with drainage pipeline defects

变压器 管道(软件) 管道运输 卷积神经网络 计算机科学 排水 特征提取 人工神经网络 模式识别(心理学) 人工智能 计算机视觉 实时计算 工程类 电气工程 电压 环境工程 生物 生态学 程序设计语言
作者
Duo Ma,Hongyuan Fang,Niannian Wang,Hongfang Lü,John C. Matthews,Chao Zhang
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:38 (15): 2109-2127 被引量:78
标识
DOI:10.1111/mice.12970
摘要

Abstract Regular detection of defects in drainage pipelines is crucial. However, some problems associated with pipeline defect detection, such as data scarcity and defect counting difficulty, need to be addressed. Therefore, a Transformer‐optimized generation, detection, and counting method for drainage‐pipeline defects was established in this paper. First, a generation network called Trans‐GAN‐Cla was developed for data augmentation. A classification network was trained to improve the quality of the generated images. Second, a detection and tracking model called Trans‐Det‐Tra was developed to track and count the number of defects. Third, the feature extraction capability of the proposed method was improved by leveraging Transformers. Compared with some well‐known convolutional neural network‐based methods, the proposed network achieved the best classification and detection accuracies of 87.2% and 87.57%, respectively. Furthermore, the F 1 scores were 87.7% and 91.9%. Finally, two pieces of onsite videos were detected and tracked, and the numbers of misalignments and obstacles were accurately counted. The results indicate that the established Transformer‐optimized method can generate high‐quality images and realize the high‐accuracy detection and counting of drainage pipeline defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呱呱蛙完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
Ztx发布了新的文献求助10
1秒前
冰茉莉发布了新的文献求助50
2秒前
wanci应助Marciu33采纳,获得10
2秒前
坚强乌龟完成签到,获得积分20
2秒前
元谷雪发布了新的文献求助10
3秒前
大力飞扬发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
深情安青应助和谐谷蕊采纳,获得10
8秒前
专注的问寒应助法外狂徒采纳,获得100
8秒前
9秒前
呱呱蛙发布了新的文献求助10
10秒前
10秒前
啊呜发布了新的文献求助10
11秒前
努力发文不会累完成签到,获得积分10
11秒前
明亮的颖完成签到,获得积分10
11秒前
11秒前
lyy驳回了CodeCraft应助
12秒前
jsw发布了新的文献求助10
12秒前
12秒前
专注的问寒应助坚强乌龟采纳,获得20
13秒前
13秒前
13秒前
核动力驴发布了新的文献求助10
14秒前
1121发布了新的文献求助10
14秒前
宁燕完成签到,获得积分10
15秒前
mmmk完成签到,获得积分10
15秒前
英俊的铭应助jklwss采纳,获得10
15秒前
Annihilating完成签到,获得积分10
15秒前
zhj发布了新的文献求助10
17秒前
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695511
求助须知:如何正确求助?哪些是违规求助? 5102149
关于积分的说明 15216311
捐赠科研通 4851790
什么是DOI,文献DOI怎么找? 2602705
邀请新用户注册赠送积分活动 1554389
关于科研通互助平台的介绍 1512420