Transformer‐optimized generation, detection, and tracking network for images with drainage pipeline defects

变压器 管道(软件) 管道运输 卷积神经网络 计算机科学 排水 特征提取 人工神经网络 模式识别(心理学) 人工智能 计算机视觉 实时计算 工程类 电气工程 电压 环境工程 生物 生态学 程序设计语言
作者
Duo Ma,Hongyuan Fang,Niannian Wang,Hongfang Lü,John C. Matthews,Chao Zhang
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:38 (15): 2109-2127 被引量:78
标识
DOI:10.1111/mice.12970
摘要

Abstract Regular detection of defects in drainage pipelines is crucial. However, some problems associated with pipeline defect detection, such as data scarcity and defect counting difficulty, need to be addressed. Therefore, a Transformer‐optimized generation, detection, and counting method for drainage‐pipeline defects was established in this paper. First, a generation network called Trans‐GAN‐Cla was developed for data augmentation. A classification network was trained to improve the quality of the generated images. Second, a detection and tracking model called Trans‐Det‐Tra was developed to track and count the number of defects. Third, the feature extraction capability of the proposed method was improved by leveraging Transformers. Compared with some well‐known convolutional neural network‐based methods, the proposed network achieved the best classification and detection accuracies of 87.2% and 87.57%, respectively. Furthermore, the F 1 scores were 87.7% and 91.9%. Finally, two pieces of onsite videos were detected and tracked, and the numbers of misalignments and obstacles were accurately counted. The results indicate that the established Transformer‐optimized method can generate high‐quality images and realize the high‐accuracy detection and counting of drainage pipeline defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lucky发布了新的文献求助10
刚刚
lmz完成签到,获得积分20
1秒前
1秒前
薇薇发布了新的文献求助10
1秒前
2秒前
汤汤水水发布了新的文献求助10
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
小章发布了新的文献求助10
5秒前
5秒前
Hello应助xiuxiu_27采纳,获得10
5秒前
四季豆完成签到,获得积分10
6秒前
李健应助xcl采纳,获得10
6秒前
zstzst完成签到,获得积分10
6秒前
mihriban发布了新的文献求助10
6秒前
ding应助暮时采纳,获得10
6秒前
9182发布了新的文献求助10
7秒前
7秒前
7秒前
Twonej应助yuyyy采纳,获得30
8秒前
9秒前
Biyeeee完成签到 ,获得积分10
9秒前
10秒前
打打应助zzy采纳,获得10
10秒前
JamesPei应助hua采纳,获得10
10秒前
10秒前
11秒前
归尘发布了新的文献求助10
11秒前
大个应助zsg采纳,获得10
11秒前
11秒前
11秒前
Czf完成签到,获得积分10
12秒前
12秒前
小冯完成签到,获得积分10
12秒前
领导范儿应助呼噜噜采纳,获得10
13秒前
Accpted河豚发布了新的文献求助10
14秒前
折颜发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760339
求助须知:如何正确求助?哪些是违规求助? 5524315
关于积分的说明 15397180
捐赠科研通 4897238
什么是DOI,文献DOI怎么找? 2634090
邀请新用户注册赠送积分活动 1582111
关于科研通互助平台的介绍 1537591