Transformer‐optimized generation, detection, and tracking network for images with drainage pipeline defects

变压器 管道(软件) 管道运输 卷积神经网络 计算机科学 排水 特征提取 人工神经网络 模式识别(心理学) 人工智能 计算机视觉 实时计算 工程类 电气工程 电压 环境工程 生物 生态学 程序设计语言
作者
Duo Ma,Hongyuan Fang,Niannian Wang,Hongfang Lü,John C. Matthews,Chao Zhang
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:38 (15): 2109-2127 被引量:78
标识
DOI:10.1111/mice.12970
摘要

Abstract Regular detection of defects in drainage pipelines is crucial. However, some problems associated with pipeline defect detection, such as data scarcity and defect counting difficulty, need to be addressed. Therefore, a Transformer‐optimized generation, detection, and counting method for drainage‐pipeline defects was established in this paper. First, a generation network called Trans‐GAN‐Cla was developed for data augmentation. A classification network was trained to improve the quality of the generated images. Second, a detection and tracking model called Trans‐Det‐Tra was developed to track and count the number of defects. Third, the feature extraction capability of the proposed method was improved by leveraging Transformers. Compared with some well‐known convolutional neural network‐based methods, the proposed network achieved the best classification and detection accuracies of 87.2% and 87.57%, respectively. Furthermore, the F 1 scores were 87.7% and 91.9%. Finally, two pieces of onsite videos were detected and tracked, and the numbers of misalignments and obstacles were accurately counted. The results indicate that the established Transformer‐optimized method can generate high‐quality images and realize the high‐accuracy detection and counting of drainage pipeline defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
congdexxx完成签到,获得积分10
刚刚
Singularity发布了新的文献求助10
1秒前
搜集达人应助橙子采纳,获得10
1秒前
XNF发布了新的文献求助10
1秒前
111发布了新的文献求助10
1秒前
3秒前
CodeCraft应助印第安老斑鸠采纳,获得10
4秒前
4秒前
6秒前
brk发布了新的文献求助10
6秒前
8秒前
8秒前
9秒前
xu应助多摩川的烟花少年采纳,获得10
9秒前
liutong完成签到 ,获得积分10
10秒前
10秒前
10秒前
10秒前
11秒前
有几颗荔枝完成签到,获得积分20
11秒前
111完成签到,获得积分10
12秒前
brk完成签到,获得积分10
12秒前
英姑应助典雅的友安采纳,获得10
13秒前
Sunny发布了新的文献求助30
13秒前
15秒前
威武从霜发布了新的文献求助10
15秒前
16秒前
情怀应助zzz采纳,获得10
16秒前
酷钱发布了新的文献求助10
17秒前
17秒前
笨笨的怜雪完成签到 ,获得积分10
18秒前
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
香蕉觅云应助Aether采纳,获得10
20秒前
21秒前
脑洞疼应助sikaixue采纳,获得10
22秒前
23秒前
ZJHYNL发布了新的文献求助10
24秒前
有几颗荔枝关注了科研通微信公众号
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642496
求助须知:如何正确求助?哪些是违规求助? 4758935
关于积分的说明 15017747
捐赠科研通 4801078
什么是DOI,文献DOI怎么找? 2566357
邀请新用户注册赠送积分活动 1524465
关于科研通互助平台的介绍 1483995