Transformer‐optimized generation, detection, and tracking network for images with drainage pipeline defects

变压器 管道(软件) 管道运输 卷积神经网络 计算机科学 排水 特征提取 人工神经网络 模式识别(心理学) 人工智能 计算机视觉 实时计算 工程类 电气工程 电压 环境工程 生物 生态学 程序设计语言
作者
Duo Ma,Hongyuan Fang,Niannian Wang,Hongfang Lü,John C. Matthews,Chao Zhang
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:38 (15): 2109-2127 被引量:78
标识
DOI:10.1111/mice.12970
摘要

Abstract Regular detection of defects in drainage pipelines is crucial. However, some problems associated with pipeline defect detection, such as data scarcity and defect counting difficulty, need to be addressed. Therefore, a Transformer‐optimized generation, detection, and counting method for drainage‐pipeline defects was established in this paper. First, a generation network called Trans‐GAN‐Cla was developed for data augmentation. A classification network was trained to improve the quality of the generated images. Second, a detection and tracking model called Trans‐Det‐Tra was developed to track and count the number of defects. Third, the feature extraction capability of the proposed method was improved by leveraging Transformers. Compared with some well‐known convolutional neural network‐based methods, the proposed network achieved the best classification and detection accuracies of 87.2% and 87.57%, respectively. Furthermore, the F 1 scores were 87.7% and 91.9%. Finally, two pieces of onsite videos were detected and tracked, and the numbers of misalignments and obstacles were accurately counted. The results indicate that the established Transformer‐optimized method can generate high‐quality images and realize the high‐accuracy detection and counting of drainage pipeline defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西一兮完成签到,获得积分10
2秒前
fy完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
4秒前
溜溜梅发布了新的文献求助10
4秒前
温暖眼神完成签到,获得积分10
5秒前
5秒前
7秒前
nnmmuu发布了新的文献求助10
8秒前
8秒前
liyuqin完成签到,获得积分20
8秒前
求助人员发布了新的文献求助10
9秒前
9秒前
11秒前
面包战士发布了新的文献求助10
11秒前
归海凡儿完成签到,获得积分10
11秒前
orixero应助zzcres采纳,获得10
12秒前
上官若男应助溜溜梅采纳,获得10
13秒前
Lucas应助正正采纳,获得10
14秒前
赫不斜给赫不斜的求助进行了留言
15秒前
踏实的惋庭完成签到,获得积分10
15秒前
漂流hane完成签到,获得积分10
16秒前
落后的夜阑完成签到,获得积分10
18秒前
研友_VZG7GZ应助蓝草采纳,获得10
18秒前
Freesia完成签到,获得积分10
19秒前
19秒前
一步之遥完成签到,获得积分10
20秒前
SciGPT应助易水寒采纳,获得30
21秒前
唠叨的向日葵完成签到,获得积分10
22秒前
22秒前
Freesia发布了新的文献求助10
22秒前
潘娜的潘完成签到,获得积分10
22秒前
一颗菠菜完成签到,获得积分10
24秒前
勤劳不弱发布了新的文献求助30
24秒前
25秒前
量子星尘发布了新的文献求助10
26秒前
jj发布了新的文献求助10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613393
求助须知:如何正确求助?哪些是违规求助? 4698608
关于积分的说明 14898233
捐赠科研通 4736102
什么是DOI,文献DOI怎么找? 2547006
邀请新用户注册赠送积分活动 1510998
关于科研通互助平台的介绍 1473546