Insight Extraction From E-Health Bookings by Means of Hypergraph and Machine Learning

计算机科学 医疗保健 嵌入 图形 人工智能 政府(语言学) 机器学习 数据挖掘 数据科学 理论计算机科学 语言学 哲学 经济 经济增长
作者
Vincenzo Schiano di Cola,Diletta Chiaro,Edoardo Prezioso,Stefano Izzo,Fabio Giampaolo
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (10): 4649-4659 被引量:5
标识
DOI:10.1109/jbhi.2022.3233498
摘要

New technologies are transforming medicine, and this revolution starts with data. Usually, health services within public healthcare systems are accessed through a booking centre managed by local health authorities and controlled by the regional government. In this perspective, structuring e-health data through a Knowledge Graph (KG) approach can provide a feasible method to quickly and simply organize data and/or retrieve new information. Starting from raw health bookings data from the public healthcare system in Italy, a KG method is presented to support e-health services through the extraction of medical knowledge and novel insights. By exploiting graph embedding which arranges the various attributes of the entities into the same vector space, we are able to apply Machine Learning (ML) techniques to the embedded vectors. The findings suggest that KGs could be used to assess patients' medical booking patterns, either from unsupervised or supervised ML. In particular, the former can determine possible presence of hidden groups of entities that is not immediately available through the original legacy dataset structure. The latter, although the performance of the used algorithms is not very high, shows encouraging results in predicting a patient's likelihood to undergo a particular medical visit within a year. However, many technological advances remain to be made, especially in graph database technologies and graph embedding algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落后寒凡发布了新的文献求助10
2秒前
斯文败类应助萧七七采纳,获得10
3秒前
ff发布了新的文献求助10
4秒前
搜集达人应助oaixlittle采纳,获得10
4秒前
6秒前
ljh发布了新的文献求助10
7秒前
xiaohu完成签到,获得积分10
7秒前
8秒前
8秒前
yiyi131发布了新的文献求助10
10秒前
11秒前
鳗鱼花生发布了新的文献求助10
13秒前
He完成签到,获得积分10
13秒前
陈曦完成签到,获得积分10
18秒前
basilbrush完成签到,获得积分10
19秒前
蓝色条纹衫完成签到 ,获得积分10
20秒前
qhdsyxy完成签到 ,获得积分0
21秒前
小西完成签到 ,获得积分10
21秒前
善学以致用应助百特曼采纳,获得10
22秒前
yiwan完成签到,获得积分10
22秒前
鸢尾松茶完成签到 ,获得积分10
23秒前
风趣秋白完成签到,获得积分10
24秒前
专注的煎饼完成签到,获得积分20
24秒前
25秒前
Shaw发布了新的文献求助10
25秒前
领导范儿应助ff采纳,获得10
26秒前
黑米粥完成签到,获得积分0
27秒前
oaixlittle发布了新的文献求助10
29秒前
淡淡向卉完成签到,获得积分10
30秒前
千亦应助niu采纳,获得10
31秒前
wanci应助英勇的鼠标采纳,获得10
32秒前
yuanqi完成签到,获得积分10
34秒前
嗯哼应助爱看论文的小K采纳,获得10
34秒前
36秒前
隐形曼青应助PONY采纳,获得10
36秒前
oldchen完成签到 ,获得积分10
36秒前
傅觉然完成签到,获得积分10
37秒前
烟花应助水木采纳,获得30
37秒前
38秒前
38秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3074356
求助须知:如何正确求助?哪些是违规求助? 2727810
关于积分的说明 7500504
捐赠科研通 2375930
什么是DOI,文献DOI怎么找? 1259616
科研通“疑难数据库(出版商)”最低求助积分说明 610743
版权声明 597081