Insight Extraction From E-Health Bookings by Means of Hypergraph and Machine Learning

计算机科学 医疗保健 嵌入 图形 人工智能 政府(语言学) 机器学习 数据挖掘 数据科学 理论计算机科学 语言学 经济增长 哲学 经济
作者
Vincenzo Schiano di Cola,Diletta Chiaro,Edoardo Prezioso,Stefano Izzo,Fabio Giampaolo
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (10): 4649-4659 被引量:5
标识
DOI:10.1109/jbhi.2022.3233498
摘要

New technologies are transforming medicine, and this revolution starts with data. Usually, health services within public healthcare systems are accessed through a booking centre managed by local health authorities and controlled by the regional government. In this perspective, structuring e-health data through a Knowledge Graph (KG) approach can provide a feasible method to quickly and simply organize data and/or retrieve new information. Starting from raw health bookings data from the public healthcare system in Italy, a KG method is presented to support e-health services through the extraction of medical knowledge and novel insights. By exploiting graph embedding which arranges the various attributes of the entities into the same vector space, we are able to apply Machine Learning (ML) techniques to the embedded vectors. The findings suggest that KGs could be used to assess patients' medical booking patterns, either from unsupervised or supervised ML. In particular, the former can determine possible presence of hidden groups of entities that is not immediately available through the original legacy dataset structure. The latter, although the performance of the used algorithms is not very high, shows encouraging results in predicting a patient's likelihood to undergo a particular medical visit within a year. However, many technological advances remain to be made, especially in graph database technologies and graph embedding algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Wencheng Ma发布了新的文献求助10
3秒前
冷冷暴力发布了新的文献求助10
4秒前
无问完成签到,获得积分10
4秒前
yongjie发布了新的文献求助10
5秒前
星辰大海应助夜雨声烦采纳,获得10
6秒前
CYP450完成签到,获得积分10
6秒前
7秒前
7秒前
泡泡熊不吐泡泡完成签到 ,获得积分10
7秒前
任性唇膏完成签到,获得积分10
7秒前
周星星发布了新的文献求助10
7秒前
9秒前
10秒前
keepory86完成签到,获得积分10
11秒前
12秒前
12秒前
张奕发布了新的文献求助10
13秒前
wade发布了新的文献求助10
13秒前
yongjie完成签到,获得积分10
14秒前
ddli发布了新的文献求助10
15秒前
Willy发布了新的文献求助30
15秒前
研友_Y59785应助神棍喜来乐采纳,获得10
16秒前
16秒前
18秒前
scinewbee发布了新的文献求助10
19秒前
务实的菓给务实的菓的求助进行了留言
20秒前
q792309106发布了新的文献求助10
21秒前
23秒前
25秒前
scinewbee完成签到,获得积分10
27秒前
27秒前
Coral.发布了新的文献求助10
30秒前
哪有人不疯完成签到,获得积分10
31秒前
bkagyin应助悲凉的雁风采纳,获得10
32秒前
小蘑菇应助科研达人采纳,获得10
32秒前
科研通AI5应助q792309106采纳,获得10
32秒前
syvshc应助科研达人采纳,获得10
32秒前
小蘑菇应助科研达人采纳,获得10
32秒前
syvshc应助科研达人采纳,获得10
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994202
求助须知:如何正确求助?哪些是违规求助? 3534683
关于积分的说明 11266214
捐赠科研通 3274605
什么是DOI,文献DOI怎么找? 1806394
邀请新用户注册赠送积分活动 883273
科研通“疑难数据库(出版商)”最低求助积分说明 809724