Insight Extraction From E-Health Bookings by Means of Hypergraph and Machine Learning

计算机科学 医疗保健 嵌入 图形 人工智能 政府(语言学) 机器学习 数据挖掘 数据科学 理论计算机科学 语言学 哲学 经济 经济增长
作者
Vincenzo Schiano di Cola,Diletta Chiaro,Edoardo Prezioso,Stefano Izzo,Fabio Giampaolo
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (10): 4649-4659 被引量:5
标识
DOI:10.1109/jbhi.2022.3233498
摘要

New technologies are transforming medicine, and this revolution starts with data. Usually, health services within public healthcare systems are accessed through a booking centre managed by local health authorities and controlled by the regional government. In this perspective, structuring e-health data through a Knowledge Graph (KG) approach can provide a feasible method to quickly and simply organize data and/or retrieve new information. Starting from raw health bookings data from the public healthcare system in Italy, a KG method is presented to support e-health services through the extraction of medical knowledge and novel insights. By exploiting graph embedding which arranges the various attributes of the entities into the same vector space, we are able to apply Machine Learning (ML) techniques to the embedded vectors. The findings suggest that KGs could be used to assess patients' medical booking patterns, either from unsupervised or supervised ML. In particular, the former can determine possible presence of hidden groups of entities that is not immediately available through the original legacy dataset structure. The latter, although the performance of the used algorithms is not very high, shows encouraging results in predicting a patient's likelihood to undergo a particular medical visit within a year. However, many technological advances remain to be made, especially in graph database technologies and graph embedding algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Supreme完成签到,获得积分10
2秒前
2秒前
4秒前
朴实初夏完成签到 ,获得积分10
4秒前
4秒前
6秒前
不配.应助李佳倩采纳,获得10
6秒前
7秒前
gxyyy发布了新的文献求助10
8秒前
隐形曼青应助科学家采纳,获得10
9秒前
10秒前
yangyang发布了新的文献求助10
10秒前
whale发布了新的文献求助10
11秒前
大个应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
叶子完成签到,获得积分10
16秒前
muxinzx发布了新的文献求助10
17秒前
flyfish完成签到 ,获得积分10
17秒前
CooL完成签到 ,获得积分10
18秒前
19秒前
深情安青应助勤恳夜梅采纳,获得10
21秒前
bkagyin应助Tian采纳,获得10
23秒前
云风发布了新的文献求助10
24秒前
芮rui完成签到,获得积分10
28秒前
Pakben完成签到,获得积分10
28秒前
陈子橙1关注了科研通微信公众号
31秒前
32秒前
33秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240722
求助须知:如何正确求助?哪些是违规求助? 2885466
关于积分的说明 8238658
捐赠科研通 2553893
什么是DOI,文献DOI怎么找? 1382010
科研通“疑难数据库(出版商)”最低求助积分说明 649440
邀请新用户注册赠送积分活动 625079