Self-Supervised EEG Emotion Recognition Models Based on CNN

计算机科学 人工智能 卷积神经网络 情绪分类 模式识别(心理学) 脑电图 监督学习 机器学习 深度学习 任务(项目管理) 脑-机接口 转化(遗传学) 构造(python库) 学习迁移 人工神经网络 语音识别 心理学 生物化学 化学 管理 精神科 经济 基因 程序设计语言
作者
Xingyi Wang,Yuliang Ma,Jared Cammon,Feng Fang,Yunyuan Gao,Yingchun Zhang
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 1952-1962 被引量:20
标识
DOI:10.1109/tnsre.2023.3263570
摘要

Emotion plays crucial roles in human life. Recently, emotion classification from electroencephalogram (EEG) signal has attracted attention by researchers due to the rapid development of brain computer interface (BCI) techniques and machine learning algorithms. However, recent studies on emotion classification show resource utilization because they use the fully-supervised learning methods. Therefore, in this study, we applied the self-supervised learning methods to improve the efficiency of resources usage. We employed a self-supervised approach to train deep multi-task convolutional neural network (CNN) for EEG-based emotion classification. First, six signal transformations were performed on unlabeled EEG data to construct the pretext task. Second, a multi-task CNN was used to perform signal transformation recognition on the transformed signals together with the original signals. After the signal transformation recognition network was trained, the convolutional layer network was frozen and the fully connected layer was reconstructed as emotion recognition network. Finally, the EEG data with affective labels were used to train the emotion recognition network to clarify the emotion. In this paper, we conduct extensive experiments from the data scaling perspective using the SEED, DEAP affective dataset. Results showed that the self-supervised learning methods can learn the internal representation of data and save computation time compared to the fully-supervised learning methods. In conclusion, our study suggests that the self-supervised machine learning model can improve the performance of emotion classification compared to the conventional fully supervised model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
777发布了新的文献求助10
4秒前
笨笨中心发布了新的文献求助10
5秒前
顺心的问薇完成签到 ,获得积分10
6秒前
8秒前
9秒前
三年H发布了新的文献求助10
9秒前
Rondab应助照九州采纳,获得20
13秒前
14秒前
欧小仙完成签到,获得积分10
15秒前
三年H完成签到,获得积分10
16秒前
17秒前
大个应助竹林采纳,获得10
18秒前
立军发布了新的文献求助10
20秒前
Ava应助含糊的雨安采纳,获得10
22秒前
小蘑菇应助金不换采纳,获得10
24秒前
量子星尘发布了新的文献求助10
26秒前
28秒前
28秒前
30秒前
30秒前
30秒前
30秒前
ferny完成签到,获得积分10
31秒前
852应助刘媛媛采纳,获得10
31秒前
和平鸽完成签到 ,获得积分10
32秒前
竹林发布了新的文献求助10
34秒前
35秒前
淡定海亦发布了新的文献求助10
35秒前
jessie完成签到,获得积分10
35秒前
36秒前
37秒前
37秒前
竹林完成签到,获得积分10
38秒前
小黄完成签到,获得积分20
39秒前
金不换发布了新的文献求助10
42秒前
小黄发布了新的文献求助10
43秒前
44秒前
chen应助立军采纳,获得10
45秒前
47秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952508
求助须知:如何正确求助?哪些是违规求助? 3497869
关于积分的说明 11089256
捐赠科研通 3228427
什么是DOI,文献DOI怎么找? 1784869
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309