A Transformer-Based Contrastive Semi-Supervised Learning Framework for Automatic Modulation Recognition

计算机科学 人工智能 联营 深度学习 卷积神经网络 编码器 变压器 模式识别(心理学) 人工神经网络 分类器(UML) 嵌入 机器学习 监督学习 语音识别 电压 物理 量子力学 操作系统
作者
Weisi Kong,Xun Jiao,Yuhua Xu,Bolin Zhang,Qinghai Yang
出处
期刊:IEEE Transactions on Cognitive Communications and Networking [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 950-962 被引量:58
标识
DOI:10.1109/tccn.2023.3264908
摘要

The application of deep learning improves the processing speed and the accuracy of automatic modulation recognition (AMR). As a result, it realizes intelligent spectrum management and electronic reconnaissance. However, deep learning-aided AMR usually requires a large number of labeled samples to obtain a reliable neural network model. In practical applications, due to economic costs and privacy constraints, there is a small number of labeled samples but a large number of unlabeled samples. This paper proposes a Transformer-based contrastive semi-supervised learning framework for AMR. First, self-supervised contrastive pre-training of the Transformer-based encoder is completed using unlabeled samples, and data augmentation is realized through time warping. Then, the pre-trained encoder and a randomly initialized classifier are fine-tuned using labeled samples, and hierarchical learning rates are employed to ensure classification accuracy. Considering the problems of applying Transformer to AMR, a convolutional transformer deep neural network is proposed, which involves convolutional embedding, attention bias, and attention pooling. In experiments, the feasibility of the framework is analyzed through linear evaluation of the framework components on the RML2016.10a dataset. Also, the proposed framework is compared with existing semi-supervised methods on RML2016.10a and RML2016.10b datasets to verify its superiority and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
顾矜应助loyuanhao采纳,获得10
2秒前
老麦完成签到 ,获得积分20
2秒前
2秒前
香蕉诗蕊应助李鱼采纳,获得10
3秒前
3秒前
传统的怀薇完成签到 ,获得积分10
4秒前
研友_ngX12Z发布了新的文献求助10
6秒前
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
萝卜青菜应助科研通管家采纳,获得20
6秒前
勤恳雅莉应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
7秒前
shi hui应助科研通管家采纳,获得10
7秒前
cc应助科研通管家采纳,获得20
7秒前
华仔应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得30
7秒前
7秒前
shi hui应助科研通管家采纳,获得10
7秒前
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
8秒前
9秒前
徐yy完成签到 ,获得积分10
11秒前
bfsd凡发布了新的文献求助10
14秒前
鲤鱼诗桃发布了新的文献求助10
16秒前
科研通AI6应助灯箱采纳,获得10
17秒前
17秒前
Jasper应助霸气的保温杯采纳,获得10
18秒前
20秒前
收费完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560766
求助须知:如何正确求助?哪些是违规求助? 4646107
关于积分的说明 14677378
捐赠科研通 4587231
什么是DOI,文献DOI怎么找? 2516891
邀请新用户注册赠送积分活动 1490320
关于科研通互助平台的介绍 1461160