A Transformer-Based Contrastive Semi-Supervised Learning Framework for Automatic Modulation Recognition

计算机科学 人工智能 联营 深度学习 卷积神经网络 编码器 变压器 模式识别(心理学) 人工神经网络 分类器(UML) 嵌入 机器学习 监督学习 语音识别 电压 物理 量子力学 操作系统
作者
Weisi Kong,Xun Jiao,Yuhua Xu,Bolin Zhang,Qinghai Yang
出处
期刊:IEEE Transactions on Cognitive Communications and Networking [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 950-962 被引量:58
标识
DOI:10.1109/tccn.2023.3264908
摘要

The application of deep learning improves the processing speed and the accuracy of automatic modulation recognition (AMR). As a result, it realizes intelligent spectrum management and electronic reconnaissance. However, deep learning-aided AMR usually requires a large number of labeled samples to obtain a reliable neural network model. In practical applications, due to economic costs and privacy constraints, there is a small number of labeled samples but a large number of unlabeled samples. This paper proposes a Transformer-based contrastive semi-supervised learning framework for AMR. First, self-supervised contrastive pre-training of the Transformer-based encoder is completed using unlabeled samples, and data augmentation is realized through time warping. Then, the pre-trained encoder and a randomly initialized classifier are fine-tuned using labeled samples, and hierarchical learning rates are employed to ensure classification accuracy. Considering the problems of applying Transformer to AMR, a convolutional transformer deep neural network is proposed, which involves convolutional embedding, attention bias, and attention pooling. In experiments, the feasibility of the framework is analyzed through linear evaluation of the framework components on the RML2016.10a dataset. Also, the proposed framework is compared with existing semi-supervised methods on RML2016.10a and RML2016.10b datasets to verify its superiority and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗的大白菜完成签到,获得积分10
1秒前
熊儒恒完成签到,获得积分10
1秒前
1秒前
白江虎发布了新的文献求助10
2秒前
笑点低的凉面完成签到,获得积分10
2秒前
Huzhu应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
多边形完成签到 ,获得积分10
3秒前
头哥应助科研通管家采纳,获得10
3秒前
3秒前
Rookie应助科研通管家采纳,获得10
3秒前
Wefaily应助科研通管家采纳,获得50
3秒前
3秒前
南宫应助科研通管家采纳,获得10
3秒前
3秒前
Owen应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
zoe完成签到,获得积分10
4秒前
滴答滴完成签到 ,获得积分10
4秒前
dtcao完成签到,获得积分20
4秒前
笨笨的外套完成签到,获得积分10
5秒前
缓慢的王完成签到,获得积分10
6秒前
周一一完成签到,获得积分10
6秒前
Libra完成签到,获得积分10
6秒前
6秒前
一一完成签到,获得积分10
6秒前
7秒前
执着黑米完成签到 ,获得积分10
7秒前
7秒前
浪费完成签到 ,获得积分10
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482803
求助须知:如何正确求助?哪些是违规求助? 4583511
关于积分的说明 14390213
捐赠科研通 4512809
什么是DOI,文献DOI怎么找? 2473255
邀请新用户注册赠送积分活动 1459255
关于科研通互助平台的介绍 1432883