A Transformer-Based Contrastive Semi-Supervised Learning Framework for Automatic Modulation Recognition

计算机科学 人工智能 联营 深度学习 卷积神经网络 编码器 变压器 模式识别(心理学) 人工神经网络 分类器(UML) 嵌入 机器学习 监督学习 语音识别 电压 物理 量子力学 操作系统
作者
Weisi Kong,Xun Jiao,Yuhua Xu,Bolin Zhang,Qinghai Yang
出处
期刊:IEEE Transactions on Cognitive Communications and Networking [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 950-962 被引量:15
标识
DOI:10.1109/tccn.2023.3264908
摘要

The application of deep learning improves the processing speed and the accuracy of automatic modulation recognition (AMR). As a result, it realizes intelligent spectrum management and electronic reconnaissance. However, deep learning-aided AMR usually requires a large number of labeled samples to obtain a reliable neural network model. In practical applications, due to economic costs and privacy constraints, there is a small number of labeled samples but a large number of unlabeled samples. This paper proposes a Transformer-based contrastive semi-supervised learning framework for AMR. First, self-supervised contrastive pre-training of the Transformer-based encoder is completed using unlabeled samples, and data augmentation is realized through time warping. Then, the pre-trained encoder and a randomly initialized classifier are fine-tuned using labeled samples, and hierarchical learning rates are employed to ensure classification accuracy. Considering the problems of applying Transformer to AMR, a convolutional transformer deep neural network is proposed, which involves convolutional embedding, attention bias, and attention pooling. In experiments, the feasibility of the framework is analyzed through linear evaluation of the framework components on the RML2016.10a dataset. Also, the proposed framework is compared with existing semi-supervised methods on RML2016.10a and RML2016.10b datasets to verify its superiority and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
1秒前
椿·完成签到,获得积分10
2秒前
栗子发布了新的文献求助10
2秒前
复杂忻完成签到,获得积分10
2秒前
优美煎蛋关注了科研通微信公众号
3秒前
3秒前
3秒前
猪猪比特发布了新的文献求助10
3秒前
lm发布了新的文献求助10
3秒前
可爱的函函应助o10采纳,获得10
4秒前
汉堡包应助科研小白采纳,获得10
4秒前
4秒前
4秒前
4秒前
didi完成签到,获得积分10
5秒前
英俊的铭应助bolunxier采纳,获得10
5秒前
linyanmei完成签到,获得积分20
5秒前
5秒前
5秒前
浅浅发布了新的文献求助10
5秒前
52发布了新的文献求助10
6秒前
6秒前
啊哦呃咦唔吁完成签到,获得积分10
7秒前
搜集达人应助海藻采纳,获得10
7秒前
守夜人发布了新的文献求助10
7秒前
8秒前
ding应助等待若烟采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
好好学习发布了新的文献求助30
9秒前
9秒前
9秒前
MOMO完成签到,获得积分10
10秒前
烟花应助甜甜的建辉采纳,获得10
10秒前
高分求助中
Fermented Coffee Market 2000
美国药典 1000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238452
求助须知:如何正确求助?哪些是违规求助? 4406131
关于积分的说明 13712854
捐赠科研通 4274562
什么是DOI,文献DOI怎么找? 2345601
邀请新用户注册赠送积分活动 1342629
关于科研通互助平台的介绍 1300627