Machine learning based orthodontic treatment planning for mixed dentition borderline cases suffering from moderate to severe crowding: An experimental research study

随机森林 科恩卡帕 计算机科学 拥挤 机器学习 逻辑回归 人工智能 决策树 朴素贝叶斯分类器 医学 心理学 支持向量机 神经科学
作者
Güler Burcu SENİRKENTLİ,Sinem İnce Bingöl,Metehan Ünal,Erkan Bostancı,Mehmet Serdar Güzel,Koray Açıcı
出处
期刊:Technology and Health Care [IOS Press]
卷期号:31 (5): 1723-1735 被引量:4
标识
DOI:10.3233/thc-220563
摘要

BACKGROUND: Pedodontists and general practitioners may need support in planning the early orthodontic treatment of patients with mixed dentition, especially in borderline cases. The use of machine learning algorithms is required to be able to consistently make treatment decisions for such cases. OBJECTIVE: This study aimed to use machine learning algorithms to facilitate the process of deciding whether to choose serial extraction or expansion of maxillary and mandibular dental arches for early treatment of borderline patients suffering from moderate to severe crowding. METHODS: The dataset of 116 patients who were previously treated by senior orthodontists and divided into two groups according to their treatment modalities were examined. Machine Learning algorithms including Multilayer Perceptron, Linear Logistic Regression, k-nearest Neighbors, Naïve Bayes, and Random Forest were trained on this dataset. Several metrics were used for the evaluation of accuracy, precision, recall, and kappa statistic. RESULTS: The most important 12 features were determined with the feature selection algorithm. While all algorithms achieved over 90% accuracy, Random Forest yielded 95% accuracy, with high reliability values (kappa = 0.90). CONCLUSION: The employment of machine learning methods for the treatment decision with or without extraction in the early treatment of patients in the mixed dentition can be particularly useful for pedodontists and general practitioners.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Master-wang完成签到,获得积分10
刚刚
dandany发布了新的文献求助20
刚刚
刚刚
刚刚
刚刚
刚刚
哇哦哦完成签到,获得积分20
1秒前
rioo发布了新的文献求助10
1秒前
花花发布了新的文献求助30
1秒前
2秒前
小刘完成签到,获得积分10
4秒前
聪明酒窝完成签到,获得积分10
4秒前
5秒前
5秒前
韦觅松完成签到,获得积分10
5秒前
唠叨的小丸子完成签到,获得积分10
5秒前
自信鑫鹏完成签到,获得积分10
6秒前
杨杨完成签到,获得积分10
6秒前
6秒前
SS2D完成签到,获得积分10
6秒前
超帅的遥完成签到,获得积分10
6秒前
7秒前
7秒前
yiyiyiyiyi//完成签到,获得积分10
7秒前
ding应助外向蜡烛采纳,获得10
7秒前
跳跃的翼完成签到,获得积分10
8秒前
无奈冥发布了新的文献求助10
9秒前
昏睡的傲菡完成签到 ,获得积分10
9秒前
Stella完成签到,获得积分10
9秒前
BU会完成签到,获得积分10
9秒前
阿姜姜姜姜应助GL采纳,获得10
10秒前
10秒前
11秒前
杨杨发布了新的文献求助10
11秒前
11秒前
feloys完成签到,获得积分0
11秒前
12秒前
张艾宇发布了新的文献求助10
12秒前
淡淡红牛发布了新的文献求助10
12秒前
盐盐完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953878
求助须知:如何正确求助?哪些是违规求助? 3499920
关于积分的说明 11097238
捐赠科研通 3230331
什么是DOI,文献DOI怎么找? 1785920
邀请新用户注册赠送积分活动 869697
科研通“疑难数据库(出版商)”最低求助积分说明 801572