Machine learning based orthodontic treatment planning for mixed dentition borderline cases suffering from moderate to severe crowding: An experimental research study

随机森林 科恩卡帕 计算机科学 拥挤 机器学习 逻辑回归 人工智能 决策树 朴素贝叶斯分类器 医学 心理学 支持向量机 神经科学
作者
Güler Burcu Senirkentli,Sinem İnce Bingöl,Metehan Ünal,Erkan Bostancı,Mehmet Serdar Güzel,Koray Açıcı
出处
期刊:Technology and Health Care [IOS Press]
卷期号:31 (5): 1723-1735 被引量:7
标识
DOI:10.3233/thc-220563
摘要

BACKGROUND: Pedodontists and general practitioners may need support in planning the early orthodontic treatment of patients with mixed dentition, especially in borderline cases. The use of machine learning algorithms is required to be able to consistently make treatment decisions for such cases. OBJECTIVE: This study aimed to use machine learning algorithms to facilitate the process of deciding whether to choose serial extraction or expansion of maxillary and mandibular dental arches for early treatment of borderline patients suffering from moderate to severe crowding. METHODS: The dataset of 116 patients who were previously treated by senior orthodontists and divided into two groups according to their treatment modalities were examined. Machine Learning algorithms including Multilayer Perceptron, Linear Logistic Regression, k-nearest Neighbors, Naïve Bayes, and Random Forest were trained on this dataset. Several metrics were used for the evaluation of accuracy, precision, recall, and kappa statistic. RESULTS: The most important 12 features were determined with the feature selection algorithm. While all algorithms achieved over 90% accuracy, Random Forest yielded 95% accuracy, with high reliability values (kappa = 0.90). CONCLUSION: The employment of machine learning methods for the treatment decision with or without extraction in the early treatment of patients in the mixed dentition can be particularly useful for pedodontists and general practitioners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu完成签到,获得积分10
刚刚
liubo完成签到,获得积分10
刚刚
4399完成签到,获得积分10
1秒前
2秒前
专注寻菱完成签到,获得积分10
2秒前
June完成签到,获得积分10
2秒前
天天快乐应助csy采纳,获得10
3秒前
4秒前
无医完成签到,获得积分10
4秒前
悦耳的迎蕾完成签到,获得积分10
5秒前
练得身形似鹤形完成签到 ,获得积分10
5秒前
shawn_89完成签到,获得积分10
5秒前
waswas完成签到,获得积分10
6秒前
阿北完成签到,获得积分10
6秒前
魔幻的从丹完成签到 ,获得积分10
7秒前
FU发布了新的文献求助10
7秒前
求助人员完成签到,获得积分10
7秒前
chen完成签到 ,获得积分10
7秒前
Beyond完成签到,获得积分10
8秒前
明理小凝完成签到 ,获得积分10
8秒前
迅速迎南完成签到,获得积分10
8秒前
bayes618完成签到,获得积分10
8秒前
李大胖胖完成签到 ,获得积分10
8秒前
龙眼完成签到,获得积分10
8秒前
张朝程完成签到,获得积分10
9秒前
Star完成签到,获得积分10
10秒前
lvsoul完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
拉拉完成签到,获得积分10
11秒前
Fairy完成签到 ,获得积分10
11秒前
典雅浩轩完成签到,获得积分10
11秒前
markerfxq完成签到,获得积分10
12秒前
想把太阳揣兜里完成签到,获得积分0
12秒前
科研通AI2S应助huhu采纳,获得10
13秒前
13秒前
王博士完成签到,获得积分10
13秒前
17完成签到,获得积分10
14秒前
shengdong完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698734
求助须知:如何正确求助?哪些是违规求助? 5126253
关于积分的说明 15222230
捐赠科研通 4853775
什么是DOI,文献DOI怎么找? 2604248
邀请新用户注册赠送积分活动 1555747
关于科研通互助平台的介绍 1514101