Machine learning based orthodontic treatment planning for mixed dentition borderline cases suffering from moderate to severe crowding: An experimental research study

随机森林 科恩卡帕 计算机科学 拥挤 机器学习 逻辑回归 人工智能 决策树 朴素贝叶斯分类器 医学 心理学 支持向量机 神经科学
作者
Güler Burcu SENİRKENTLİ,Sinem İnce Bingöl,Metehan Ünal,Erkan Bostancı,Mehmet Serdar Güzel,Koray Açıcı
出处
期刊:Technology and Health Care [IOS Press]
卷期号:31 (5): 1723-1735 被引量:4
标识
DOI:10.3233/thc-220563
摘要

BACKGROUND: Pedodontists and general practitioners may need support in planning the early orthodontic treatment of patients with mixed dentition, especially in borderline cases. The use of machine learning algorithms is required to be able to consistently make treatment decisions for such cases. OBJECTIVE: This study aimed to use machine learning algorithms to facilitate the process of deciding whether to choose serial extraction or expansion of maxillary and mandibular dental arches for early treatment of borderline patients suffering from moderate to severe crowding. METHODS: The dataset of 116 patients who were previously treated by senior orthodontists and divided into two groups according to their treatment modalities were examined. Machine Learning algorithms including Multilayer Perceptron, Linear Logistic Regression, k-nearest Neighbors, Naïve Bayes, and Random Forest were trained on this dataset. Several metrics were used for the evaluation of accuracy, precision, recall, and kappa statistic. RESULTS: The most important 12 features were determined with the feature selection algorithm. While all algorithms achieved over 90% accuracy, Random Forest yielded 95% accuracy, with high reliability values (kappa = 0.90). CONCLUSION: The employment of machine learning methods for the treatment decision with or without extraction in the early treatment of patients in the mixed dentition can be particularly useful for pedodontists and general practitioners.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
易水寒完成签到 ,获得积分10
刚刚
1秒前
传奇3应助鹿靡采纳,获得10
1秒前
BiuBiuBiu完成签到 ,获得积分10
1秒前
顺心子轩发布了新的文献求助10
2秒前
隐形曼青应助书俭采纳,获得10
3秒前
zhangling发布了新的文献求助10
3秒前
3秒前
大个应助咸鱼两面焦采纳,获得10
3秒前
lllllz发布了新的文献求助10
4秒前
4秒前
一丁雨完成签到,获得积分10
5秒前
ding应助浮生采纳,获得10
6秒前
领导范儿应助祖琦采纳,获得10
6秒前
6秒前
意外的月饼完成签到,获得积分10
7秒前
lhnsisi完成签到,获得积分10
7秒前
言全发布了新的文献求助10
8秒前
华仔应助干雅柏采纳,获得10
8秒前
hj456完成签到,获得积分10
9秒前
9秒前
Gao发布了新的文献求助10
9秒前
咩咩咩发布了新的文献求助10
10秒前
yesmola发布了新的文献求助10
10秒前
张冰倩完成签到,获得积分10
10秒前
11秒前
hhhh完成签到,获得积分10
11秒前
13秒前
言全完成签到,获得积分10
13秒前
DrNant完成签到,获得积分10
14秒前
田様应助elle采纳,获得10
15秒前
wanci应助hihi采纳,获得10
16秒前
是小王ya完成签到,获得积分10
16秒前
yanziwu94发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
18秒前
19秒前
周周发布了新的文献求助10
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160777
求助须知:如何正确求助?哪些是违规求助? 2811863
关于积分的说明 7893780
捐赠科研通 2470702
什么是DOI,文献DOI怎么找? 1315762
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602053