已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

FedMint: Intelligent Bilateral Client Selection in Federated Learning with Newcomer IoT Devices

计算机科学 自举(财务) 选择(遗传算法) 服务器 匹配(统计) 过程(计算) 联合学习 收入 人工智能 机器学习 质量(理念) 分布式计算 万维网 哲学 统计 业务 数学 会计 认识论 金融经济学 经济 操作系统
作者
Osama Wehbi,Sarhad Arisdakessian,Omar Abdel Wahab,Hadi Otrok,Safa Otoum,Azzam Mourad,Mohsen Guizani
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2211.01805
摘要

Federated Learning (FL) is a novel distributed privacy-preserving learning paradigm, which enables the collaboration among several participants (e.g., Internet of Things devices) for the training of machine learning models. However, selecting the participants that would contribute to this collaborative training is highly challenging. Adopting a random selection strategy would entail substantial problems due to the heterogeneity in terms of data quality, and computational and communication resources across the participants. Although several approaches have been proposed in the literature to overcome the problem of random selection, most of these approaches follow a unilateral selection strategy. In fact, they base their selection strategy on only the federated server's side, while overlooking the interests of the client devices in the process. To overcome this problem, we present in this paper FedMint, an intelligent client selection approach for federated learning on IoT devices using game theory and bootstrapping mechanism. Our solution involves the design of: (1) preference functions for the client IoT devices and federated servers to allow them to rank each other according to several factors such as accuracy and price, (2) intelligent matching algorithms that take into account the preferences of both parties in their design, and (3) bootstrapping technique that capitalizes on the collaboration of multiple federated servers in order to assign initial accuracy value for the newly connected IoT devices. Based on our simulation findings, our strategy surpasses the VanillaFL selection approach in terms of maximizing both the revenues of the client devices and accuracy of the global federated learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷河马完成签到,获得积分10
1秒前
uziMOF发布了新的文献求助10
1秒前
2秒前
3秒前
寻度完成签到,获得积分10
3秒前
双黄应助mulidexin2021采纳,获得10
3秒前
尼尼发布了新的文献求助10
4秒前
4秒前
wanci应助曦月采纳,获得30
6秒前
6秒前
7秒前
8秒前
调研昵称发布了新的文献求助10
8秒前
9秒前
晓婷婷完成签到 ,获得积分10
10秒前
KatzeBaliey完成签到,获得积分10
10秒前
10秒前
KEHUGE发布了新的文献求助10
11秒前
12秒前
无敌娜发布了新的文献求助10
14秒前
ala发布了新的文献求助10
15秒前
玩伴zz完成签到,获得积分10
16秒前
16秒前
Jasper应助samar采纳,获得10
16秒前
天道酬勤发布了新的文献求助10
17秒前
17秒前
18秒前
20秒前
烟花应助科研通管家采纳,获得10
20秒前
21秒前
大模型应助科研通管家采纳,获得10
21秒前
shinysparrow应助科研通管家采纳,获得100
21秒前
不配.应助科研通管家采纳,获得10
21秒前
完美世界应助科研通管家采纳,获得10
21秒前
buno应助neechine采纳,获得10
21秒前
科目三应助科研通管家采纳,获得10
21秒前
我是老大应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
大力访云完成签到 ,获得积分10
22秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248529
求助须知:如何正确求助?哪些是违规求助? 2891960
关于积分的说明 8269265
捐赠科研通 2559983
什么是DOI,文献DOI怎么找? 1388824
科研通“疑难数据库(出版商)”最低求助积分说明 650913
邀请新用户注册赠送积分活动 627798