Solving combinatorial optimization problems over graphs with BERT-Based Deep Reinforcement Learning

强化学习 计算机科学 最优化问题 组合优化 人工智能 旅行商问题 车辆路径问题 二次分配问题 数学优化 理论计算机科学 数学 算法 布线(电子设计自动化) 计算机网络
作者
Qi Wang,Kenneth Lai,Chunlei Tang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:619: 930-946 被引量:20
标识
DOI:10.1016/j.ins.2022.11.073
摘要

Combinatorial optimization, such as vehicle routing and traveling salesman problems for graphs, is NP-hard and has been studied for decades. Many methods have been proposed for its possible solution, including, but not limited to, exact algorithms, approximate algorithms, heuristic algorithms, and solution solvers. However, these methods cannot learn the problem’s internal structure nor generalize to similar or larger-scale problems. Recently, deep reinforcement learning has been applied to combinatorial optimization and has achieved convincing results. Nevertheless, the challenge of effective integration and training improvement still exists. In this study, we propose a novel framework (BDRL) that combines BERT (Bidirectional Encoder Representations from Transformers) and deep reinforcement learning to tackle combinatorial optimization over graphs by treating general optimization problems as data points under an identified data distribution. We first improved the transformer encoder of BERT to embed the combinatorial optimization graph effectively. By employing contrastive objectives, we extend BERT-like training to reinforcement learning and acquire self-attention-consistent representations. Next, we used hierarchical reinforcement learning to pre-train our model; that is, to train and fine-tune the model through an iterative process to make it more suitable for a specific combinatorial optimization problem. The results demonstrate our proposed framework’s generalization ability, efficiency, and effectiveness in multiple tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanjiusheng完成签到,获得积分10
刚刚
1秒前
陶醉的莫茗完成签到,获得积分10
1秒前
2秒前
3秒前
bu1998关注了科研通微信公众号
3秒前
终醒发布了新的文献求助10
4秒前
zhang@完成签到,获得积分10
4秒前
5秒前
5秒前
张乐发布了新的文献求助10
5秒前
5秒前
Jasper应助123采纳,获得10
7秒前
田様应助广成子采纳,获得10
7秒前
科研通AI6应助semigreen采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
believe发布了新的文献求助10
9秒前
米奇发布了新的文献求助10
9秒前
温暖的皮皮虾完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
Yanluo发布了新的文献求助20
12秒前
12秒前
Hello应助花源采纳,获得10
13秒前
巧克力曲奇冰激凌完成签到,获得积分10
13秒前
13秒前
源来凯始喜欢你完成签到,获得积分10
13秒前
TNT应助安诗柳采纳,获得10
13秒前
Bertha完成签到,获得积分10
14秒前
浮游应助李洪晔采纳,获得10
14秒前
LMW应助李洪晔采纳,获得10
14秒前
浮游应助李洪晔采纳,获得10
14秒前
浮游应助李洪晔采纳,获得10
14秒前
浮游应助李洪晔采纳,获得10
14秒前
浮游应助李洪晔采纳,获得10
14秒前
浮游应助李洪晔采纳,获得10
14秒前
浮游应助李洪晔采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602404
求助须知:如何正确求助?哪些是违规求助? 4011681
关于积分的说明 12419962
捐赠科研通 3691873
什么是DOI,文献DOI怎么找? 2035322
邀请新用户注册赠送积分活动 1068516
科研通“疑难数据库(出版商)”最低求助积分说明 953096