Solving combinatorial optimization problems over graphs with BERT-Based Deep Reinforcement Learning

强化学习 计算机科学 最优化问题 组合优化 人工智能 旅行商问题 车辆路径问题 二次分配问题 数学优化 理论计算机科学 数学 算法 布线(电子设计自动化) 计算机网络
作者
Qi Wang,Kenneth Lai,Chunlei Tang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:619: 930-946 被引量:20
标识
DOI:10.1016/j.ins.2022.11.073
摘要

Combinatorial optimization, such as vehicle routing and traveling salesman problems for graphs, is NP-hard and has been studied for decades. Many methods have been proposed for its possible solution, including, but not limited to, exact algorithms, approximate algorithms, heuristic algorithms, and solution solvers. However, these methods cannot learn the problem’s internal structure nor generalize to similar or larger-scale problems. Recently, deep reinforcement learning has been applied to combinatorial optimization and has achieved convincing results. Nevertheless, the challenge of effective integration and training improvement still exists. In this study, we propose a novel framework (BDRL) that combines BERT (Bidirectional Encoder Representations from Transformers) and deep reinforcement learning to tackle combinatorial optimization over graphs by treating general optimization problems as data points under an identified data distribution. We first improved the transformer encoder of BERT to embed the combinatorial optimization graph effectively. By employing contrastive objectives, we extend BERT-like training to reinforcement learning and acquire self-attention-consistent representations. Next, we used hierarchical reinforcement learning to pre-train our model; that is, to train and fine-tune the model through an iterative process to make it more suitable for a specific combinatorial optimization problem. The results demonstrate our proposed framework’s generalization ability, efficiency, and effectiveness in multiple tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助1234采纳,获得10
刚刚
刚刚
adore完成签到,获得积分20
刚刚
英俊的铭应助甜美的雁开采纳,获得10
1秒前
AbMole_小智完成签到,获得积分10
1秒前
玥越发布了新的文献求助30
2秒前
Ava应助天地一沙鸥采纳,获得10
2秒前
6rkuttsmdt完成签到,获得积分10
2秒前
雪白的凡灵完成签到,获得积分10
3秒前
yangyijx完成签到,获得积分10
4秒前
牛马完成签到,获得积分10
5秒前
直球科研发布了新的文献求助10
5秒前
5秒前
6秒前
HUA发布了新的文献求助10
6秒前
7秒前
yln发布了新的文献求助10
7秒前
8秒前
8秒前
KUZZZ完成签到,获得积分10
8秒前
9秒前
左丘以云发布了新的文献求助20
9秒前
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
科研小白完成签到,获得积分10
11秒前
Ava应助KUZZZ采纳,获得10
12秒前
SciGPT应助平常的凝蕊采纳,获得10
12秒前
whh123完成签到 ,获得积分10
12秒前
13秒前
JamesPei应助liubo采纳,获得10
13秒前
13秒前
Ava应助hahhh7采纳,获得10
14秒前
lelsey发布了新的文献求助10
14秒前
陈先生发布了新的文献求助10
14秒前
jase发布了新的文献求助10
14秒前
丫丫完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653