数学
估计员
收缩估计器
应用数学
协方差矩阵的估计
波动性(金融)
协方差
协方差矩阵
特征向量
标量(数学)
收缩率
已实现方差
统计
计量经济学
统计物理学
最小方差无偏估计量
估计量的偏差
物理
几何学
量子力学
出处
期刊:Cornell University - arXiv
日期:2022-01-01
标识
DOI:10.48550/arxiv.2211.10203
摘要
We study the estimation of the high-dimensional covariance matrix andits eigenvalues under dynamic volatility models. Data under such modelshave nonlinear dependency both cross-sectionally and temporally. We firstinvestigate the empirical spectral distribution (ESD) of the sample covariancematrix under scalar BEKK models and establish conditions under which thelimiting spectral distribution (LSD) is either the same as or different fromthe i.i.d. case. We then propose a time-variation adjusted (TV-adj) sample co-variance matrix and prove that its LSD follows the same Marcenko-Pasturlaw as the i.i.d. case. Based on the asymptotics of the TV-adj sample co-variance matrix, we develop a consistent population spectrum estimator and an asymptotically optimal nonlinear shrinkage estimator of the unconditionalcovariance matrix
科研通智能强力驱动
Strongly Powered by AbleSci AI