Oxidase-like ZnCoFe Three-Atom Nanozyme as a Colorimetric Platform for Ascorbic Acid Sensing

化学 催化作用 抗坏血酸 生物传感器 组合化学 检出限 Atom(片上系统) 氧化酶试验 金属 激进的 纳米技术 无机化学 有机化学 色谱法 生物化学 嵌入式系统 计算机科学 材料科学 食品科学
作者
Rufen Wu,Mengru Sun,Xiaolong Liu,Fengjuan Qin,Xinyu Zhang,Zhenni Qian,Juan Huang,Yujing Li,Ting Tan,Wenxing Chen,Zhengbo Chen
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (41): 14308-14316 被引量:57
标识
DOI:10.1021/acs.analchem.2c02853
摘要

Great enthusiasm in single-atom catalysts for various catalytic reactions continues to heat up. However, the poor activity of the existing single/dual-metal-atom catalysts does not meet the actual requirement. In this scenario, the precise design of triple-metal-atom catalysts is vital but still challenging. Here, a triple-atom site catalyst of FeCoZn catalyst coordinated with S and N, which is doped in the carbon matrix (named FeCoZn-TAC/SNC), is designed. The FeCoZn catalyst can mimic the activity of oxidase by activating O2 into •O2– radicals by virtue of its atomically dispersed metal active sites. Employing this characteristic, triple-atom catalysts can become a great driving force for the development of novel biosensors featuring adequate sensitivity. First, the property of FeCoZn catalyst as an oxidase-like nanozyme was explored. The obtained FeCoZn-TAC/SNC shows remarkably enhanced catalytic performance than that of FeCoZn-TAC/NC and single/dual-atom site catalysts (FeZn, CoZn, FeCo-DAC/NC and Fe, Zn, Co-SAC/NC) because of trimetallic sites, demonstrating the synergistic effect. Further, the utility of the oxidase-like FeCoZn-TAC/SNC in biosensor field is evaluated by the colorimetric sensing of ascorbic acid. The nanozyme sensor shows a wide concentration range from 0.01 to 90 μM and an excellent detection limit of 6.24 nM. The applicability of the nanozyme sensor in biologically relevant detection was further proved in serum. The implementation of TAC in colorimetric detection holds vast promise for further development of biomedical research and clinical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
平常秋珊完成签到,获得积分20
1秒前
1秒前
cxt发布了新的文献求助10
1秒前
刘博士发布了新的文献求助10
2秒前
笨笨凡松发布了新的文献求助10
2秒前
WS完成签到 ,获得积分10
2秒前
Jasper应助猕猴桃采纳,获得10
3秒前
3秒前
彦卿完成签到,获得积分20
3秒前
3秒前
风同完成签到,获得积分10
3秒前
平常秋珊发布了新的文献求助10
4秒前
4秒前
打打应助坚定的又莲采纳,获得10
5秒前
11234完成签到 ,获得积分10
5秒前
6秒前
yukuai发布了新的文献求助10
6秒前
zcz完成签到,获得积分20
7秒前
7秒前
7秒前
风同发布了新的文献求助10
8秒前
8秒前
8秒前
追寻鸵鸟完成签到,获得积分10
8秒前
天天快乐应助ee采纳,获得10
9秒前
bingxinl应助小米采纳,获得10
9秒前
9秒前
科目三应助ddd采纳,获得10
9秒前
9秒前
9秒前
9秒前
Hello应助酷小柚采纳,获得10
11秒前
11秒前
11秒前
11秒前
墨鱼烩饭发布了新的文献求助10
12秒前
12秒前
12秒前
英勇的沛春完成签到 ,获得积分10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
中成药治疗优势病种临床应用指南 2000
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3447849
求助须知:如何正确求助?哪些是违规求助? 3043640
关于积分的说明 8995279
捐赠科研通 2732054
什么是DOI,文献DOI怎么找? 1498643
科研通“疑难数据库(出版商)”最低求助积分说明 692842
邀请新用户注册赠送积分活动 690653