Artificial intelligence for personalized learning: a systematic literature review

计算机科学 个性化学习 背景(考古学) 系统回顾 过程(计算) 独创性 人工智能 知识管理 开放式学习 合作学习 教学方法 心理学 数学教育 古生物学 社会心理学 程序设计语言 梅德林 政治学 创造力 法学 生物 操作系统
作者
Glenn Hardaker,Liyana Eliza Glenn
出处
期刊:Campus-wide Information Systems [Emerald (MCB UP)]
标识
DOI:10.1108/ijilt-07-2024-0160
摘要

Purpose The purpose of this systematic literature review is to identify the antecedents that have enabled the adoption of artificial intelligence (AI) in Higher Education (HE) institutions at both a macro and micro level. The term adoption is in reference to the diffusion of technology that is actively chosen for use by the targeted demographic. Within the context of this paper, adoption is largely referring to the factors that influence the acceptance and use of AI as a tool for personalized learning. Design/methodology/approach To develop our understanding and appreciation of the valuable impact that AI potentially has upon personalized learning the following systematic literature review was conducted. An acceptable systematic literature review is a comprehensive method of fully analysing and evaluating all available research in the chosen area or specific research query. Findings The findings from this study have particular implications for personalized learning in the adoption and diffusion of AI and an increasing integration of macro, structural, and micro, individual. Developing and managing AI in education is seen, from the literature, to becoming more embedded in the teaching and learning process. The paper identifies the following: antecedents that supports the adoption of AI for personalized learning; application of AI technologies in the teaching and learning process; AI technologies that enable personalized instruction and learning; generative AI that supports intuitive learning through tracking data. Originality/value Personalized learning remains focused on customizable “choice-driven” learning and education. In addition, personalized learning and instruction is defined as being a responsive and structured method that adapts to each individual learner’s method of learning so that all may achieve their capabilities and actively participate. This solidifies the intrinsic connection between teaching and learning through personalized technologies such as AI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壹号完成签到,获得积分10
刚刚
Emma发布了新的文献求助10
1秒前
小马完成签到,获得积分10
1秒前
2秒前
奥雷里亚诺的小金鱼完成签到,获得积分10
2秒前
3秒前
风中的博完成签到,获得积分10
4秒前
帅狗发布了新的文献求助10
5秒前
5秒前
haujiun发布了新的文献求助10
6秒前
7秒前
我要7甜瓜发布了新的文献求助10
7秒前
张证彤发布了新的文献求助10
7秒前
8秒前
绝世冰淇淋完成签到 ,获得积分10
9秒前
天天快乐应助Lzr采纳,获得10
9秒前
銪志青年发布了新的文献求助10
9秒前
tutu发布了新的文献求助10
9秒前
naomi发布了新的文献求助10
10秒前
研友_VZG7GZ应助cc采纳,获得10
11秒前
图南发布了新的文献求助10
11秒前
科研通AI2S应助子非鱼采纳,获得10
12秒前
12秒前
12秒前
乐乐应助帅狗采纳,获得10
12秒前
模糊中正应助蓝天白云采纳,获得10
13秒前
不安青牛应助蓝天白云采纳,获得10
13秒前
13秒前
桐桐应助Emma采纳,获得10
13秒前
14秒前
15秒前
yydsyyd完成签到,获得积分10
15秒前
8888拉发布了新的文献求助10
15秒前
善良访烟完成签到,获得积分10
15秒前
NexusExplorer应助三余采纳,获得10
16秒前
溪风完成签到,获得积分10
16秒前
孔明不在空城完成签到,获得积分10
16秒前
arkplan完成签到,获得积分20
17秒前
子非鱼完成签到,获得积分10
17秒前
18秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3410794
求助须知:如何正确求助?哪些是违规求助? 3014348
关于积分的说明 8862922
捐赠科研通 2701746
什么是DOI,文献DOI怎么找? 1481239
科研通“疑难数据库(出版商)”最低求助积分说明 684750
邀请新用户注册赠送积分活动 679247