A Complex Concentrated Alloy with Record‐High Strength‐Toughness at 77 K

材料科学 韧性 合金 极限抗拉强度 晶体孪晶 脆性 延展性(地球科学) 应变硬化指数 变形机理 加工硬化 沉淀硬化 马氏体 体积分数 冶金 固溶强化 复合材料 材料的强化机理 无扩散变换 微观结构 蠕动
作者
Yasir Sohail,C.L. Zhang,Shaohua Gao,J.Y. Zhang,Wenli Song,Xuanzhe Li,Bo Wang,Suzhi Li,Dezhen Xue,Gang Liu,Emad Maawad,Weimin Gan,E. Ma,Jun Sun
出处
期刊:Advanced Materials [Wiley]
被引量:1
标识
DOI:10.1002/adma.202410923
摘要

Abstract High strength and large ductility, leading to a high material toughness (area under the stress‐strain curve), are desirable for alloys used in cryogenic applications. Assisted by domain‐knowledge‐informed machine learning, here a complex concentrated Fe 35 Co 29 Ni 24 Al 10 Ta 2 alloy is designed, which uses L1 2 coherent nanoprecipitates in a high volume fraction (≈65 ± 3 vol.%) in a face‐centered‐cubic (FCC) solid solution matrix that undergoes FCC‐to‐body‐centered‐cubic (BCC) phase transformation upon tensile straining. Unlike FCC‐to‐BCT phase transformation involving brittle carbon‐enriched martensite, the BCC martensite in this alloy does not cause brittleness at 77 K. The Fe 35 Co 29 Ni 24 Al 10 Ta 2 multi‐principal element alloy achieves a high yield strength ≈1.4 GPa, a high work hardening rate >4 GPa, an ultimate tensile strength ≈2.25 GPa, and a large uniform elongation ≈45%, leading to record‐high material toughness compared with previous cryogenic alloys such as 316L series stainless steels and recent high‐entropy alloys. The nanoprecipitates with nanoscale spacing (≈7.5 nm), apart from serving as dislocation obstacles for strengthening and dislocation sources for sustainable ductility, also undergo deformation twinning. Taken together, these mechanisms are found to be highly effective in strengthening and strain hardening upon tensile straining at liquid nitrogen temperature. These findings demonstrate how to effectively integrate strengthening mechanisms to synergize superior mechanical properties in special‐purpose alloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助7777777采纳,获得10
刚刚
涛浪驳回了田様应助
刚刚
刚刚
刚刚
1秒前
1秒前
个木发布了新的文献求助10
1秒前
上官若男应助SY采纳,获得10
2秒前
不易BY完成签到,获得积分10
2秒前
ee关闭了ee文献求助
2秒前
Ysh完成签到,获得积分20
2秒前
拼搏念蕾完成签到 ,获得积分10
2秒前
一页完成签到,获得积分10
3秒前
眯眯眼的衬衫应助JiaqiLiu采纳,获得10
3秒前
科研通AI2S应助VDC采纳,获得10
3秒前
wwt发布了新的文献求助10
3秒前
务实大船完成签到,获得积分10
4秒前
蜗牛撵大象完成签到,获得积分10
4秒前
5秒前
sun发布了新的文献求助10
5秒前
5秒前
二二二发布了新的文献求助10
6秒前
开心的傲安完成签到,获得积分20
6秒前
麻麻完成签到,获得积分20
6秒前
DDTT完成签到,获得积分10
7秒前
霸气的念云完成签到,获得积分10
7秒前
Orange应助欢呼小蚂蚁采纳,获得10
7秒前
7秒前
SQ完成签到,获得积分10
8秒前
8秒前
飞跃海龙完成签到 ,获得积分10
8秒前
ufuon发布了新的文献求助10
9秒前
momo完成签到,获得积分10
10秒前
赘婿应助二二二采纳,获得10
10秒前
JamesPei应助HongJiang采纳,获得10
10秒前
clarkq完成签到,获得积分10
11秒前
orixero应助LIU采纳,获得10
11秒前
经法发布了新的文献求助10
11秒前
不吃橘子完成签到,获得积分10
11秒前
Cheryy完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678