EXPRESS: Response Time Minimization for Cardiac Arrests

计算机科学 缩小 医学 运营管理 经济 程序设计语言
作者
Miguel A. Lejeune,François Margot
出处
期刊:Production and Operations Management [Wiley]
标识
DOI:10.1177/10591478251323230
摘要

Cardiac arrests are a significant health concern in the United States, as more than 350,000 occur annually and 90% of them are fatal. Providing quick access to automated external defibrillators is paramount since irreversible damage to vital organs occurs within minutes without cardiopulmonary resuscitation and defibrillation. We propose a novel optimization model to design a network of drones delivering automated external defibrillators in response to out-of-hospital cardiac arrests. The network is modeled as a collection of queues in which the occurrence of cardiac arrests is modelled as a Poisson process while the drone service times and the arrival of cardiac arrest requests at drone bases are random variables whose distribution parameters are determined endogenously. The model is formulated as a fractional integer problem with bilinear terms and minimizes the average response time which is conducive to maximizing the chance of survival of patients. We derive a mixed-integer linear reformulation and develop an exact solution method that includes a warm-start approach and new optimality-based bound tightening models. We use real-life cardiac arrest data (i) to derive health care insights about the impact of delivery mode and drone technology on response time and probability of survival, (ii) to showcase the dependency of the service rate and response time on the utilization of drones and the need to endogenize the response time, and (iii) to ascertain the computational efficiency and scalability of our approach. The cross-validation analysis confirms the robustness of the model and its applicability to unseen OHCA data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助liuzengzhang666采纳,获得10
1秒前
MRBBN发布了新的文献求助10
1秒前
徐豪发布了新的文献求助10
2秒前
lcy关闭了lcy文献求助
2秒前
mk91发布了新的文献求助10
3秒前
4秒前
Britney发布了新的文献求助10
4秒前
科研通AI2S应助Joyce采纳,获得10
4秒前
猪猪hero发布了新的文献求助20
4秒前
隐形曼青应助吴子秋采纳,获得10
5秒前
5秒前
7秒前
Patty发布了新的文献求助10
7秒前
tianmeng完成签到,获得积分10
7秒前
7秒前
QIZH发布了新的文献求助10
8秒前
小美妞发布了新的文献求助20
9秒前
兮尔发布了新的文献求助10
9秒前
10秒前
Jj7发布了新的文献求助200
10秒前
徐豪完成签到,获得积分10
10秒前
orixero应助正直的枕头采纳,获得10
11秒前
Xue完成签到,获得积分10
11秒前
11秒前
11秒前
诚c完成签到,获得积分10
12秒前
12秒前
13秒前
Atlantic发布了新的文献求助10
13秒前
橙花完成签到 ,获得积分10
14秒前
Joyce完成签到,获得积分20
14秒前
搞怪路人发布了新的文献求助10
14秒前
Amymyshirley发布了新的文献求助10
15秒前
Judy_Hui发布了新的文献求助10
15秒前
情怀应助一般学生采纳,获得10
15秒前
16秒前
ceeray23应助KK采纳,获得10
16秒前
theThreeMagi完成签到,获得积分10
17秒前
吴子秋发布了新的文献求助10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462211
求助须知:如何正确求助?哪些是违规求助? 3055793
关于积分的说明 9049420
捐赠科研通 2745387
什么是DOI,文献DOI怎么找? 1506243
科研通“疑难数据库(出版商)”最低求助积分说明 696037
邀请新用户注册赠送积分活动 695574