Near-optimal quantum kernel principal component analysis

主成分分析 核主成分分析 组分(热力学) 核(代数) 量子 数学 计算机科学 统计 人工智能 物理 核方法 组合数学 量子力学 支持向量机
作者
Youle Wang
出处
期刊:Quantum science and technology [IOP Publishing]
标识
DOI:10.1088/2058-9565/ad9176
摘要

Abstract Kernel principal component analysis (kernel PCA) is a nonlinear dimensionality reduction technique that employs kernel functions to map data into a high-dimensional feature space, thereby extending the applicability of linear PCA to nonlinear data and facilitating the extraction of informative principal components. However, kernel PCA necessitates the manipulation of large-scale matrices, leading to high computational complexity and posing challenges for efficient implementation in big data environments. Quantum computing has recently been integrated with kernel methods in machine learning, enabling effective analysis of input data within intractable feature spaces. Although existing quantum kernel PCA proposals promise exponential speedups, they impose stringent requirements on quantum hardware that are challenging to fulfill. In this work, we propose a quantum algorithm for kernel PCA by establishing a connection between quantum kernel methods and block encoding, thereby diagonalizing the centralized kernel matrix on a quantum computer. The query complexity is logarithmic with respect to the size of the data vector, $D$, and linear with respect to the size of the dataset. An exponential speedup could be achieved when the dataset consists of a few high-dimensional vectors, wherein the dataset size is polynomial in $\log(D)$, with $D$ being significantly large. In contrast to existing work, our algorithm enhances the efficiency of quantum kernel PCA and reduces the requirements for quantum hardware. Furthermore, we have also demonstrated that the algorithm based on block encoding matches the lower bound of query complexity, indicating that our algorithm is nearly optimal. Our research has laid down new pathways for developing quantum machine learning algorithms aimed at addressing tangible real-world problems and demonstrating quantum advantages within machine learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助失眠班采纳,获得10
2秒前
研友_8K2QJZ发布了新的文献求助50
2秒前
北城南笙完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
cccr02完成签到 ,获得积分10
4秒前
在水一方应助zz采纳,获得10
4秒前
黑溴完成签到,获得积分10
5秒前
洒家完成签到 ,获得积分10
5秒前
6秒前
时师太凶我完成签到,获得积分10
6秒前
研友_8oYg4n完成签到,获得积分10
6秒前
6秒前
accept发布了新的文献求助10
7秒前
7秒前
千早爱音完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
独特翠丝发布了新的文献求助10
10秒前
10秒前
11秒前
伊人完成签到,获得积分10
12秒前
Siney完成签到,获得积分10
12秒前
13秒前
musei发布了新的文献求助10
13秒前
杏林靴子发布了新的文献求助10
14秒前
科目三应助sherry221采纳,获得10
14秒前
15秒前
科研通AI2S应助jaslek采纳,获得10
15秒前
一只大肥猫完成签到,获得积分10
15秒前
16秒前
18秒前
研友_8K2QJZ发布了新的文献求助50
19秒前
Simpson完成签到 ,获得积分10
19秒前
无聊完成签到,获得积分10
19秒前
20秒前
ste11ar发布了新的文献求助10
21秒前
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137214
求助须知:如何正确求助?哪些是违规求助? 2788251
关于积分的说明 7785413
捐赠科研通 2444284
什么是DOI,文献DOI怎么找? 1299869
科研通“疑难数据库(出版商)”最低求助积分说明 625639
版权声明 601023