Near-optimal quantum kernel principal component analysis

主成分分析 核主成分分析 组分(热力学) 核(代数) 量子 数学 计算机科学 统计 人工智能 物理 核方法 组合数学 量子力学 支持向量机
作者
Youle Wang
出处
期刊:Quantum science and technology [IOP Publishing]
卷期号:10 (1): 015034-015034
标识
DOI:10.1088/2058-9565/ad9176
摘要

Abstract Kernel principal component analysis (kernel PCA) is a nonlinear dimensionality reduction technique that employs kernel functions to map data into a high-dimensional feature space, thereby extending the applicability of linear PCA to nonlinear data and facilitating the extraction of informative principal components. However, kernel PCA necessitates the manipulation of large-scale matrices, leading to high computational complexity and posing challenges for efficient implementation in big data environments. Quantum computing has recently been integrated with kernel methods in machine learning, enabling effective analysis of input data within intractable feature spaces. Although existing quantum kernel PCA proposals promise exponential speedups, they impose stringent requirements on quantum hardware that are challenging to fulfill. In this work, we propose a quantum algorithm for kernel PCA by establishing a connection between quantum kernel methods and block encoding, thereby diagonalizing the centralized kernel matrix on a quantum computer. The query complexity is logarithmic with respect to the size of the data vector, D , and linear with respect to the size of the dataset. An exponential speedup could be achieved when the dataset consists of a few high-dimensional vectors, wherein the dataset size is polynomial in log ( D ) , with D being significantly large. In contrast to existing work, our algorithm enhances the efficiency of quantum kernel PCA and reduces the requirements for quantum hardware. Furthermore, we have also demonstrated that the algorithm based on block encoding matches the lower bound of query complexity, indicating that our algorithm is nearly optimal. Our research has laid down new pathways for developing quantum machine learning algorithms aimed at addressing tangible real-world problems and demonstrating quantum advantages within machine learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
领导范儿应助Steven采纳,获得10
2秒前
3秒前
4秒前
huyz完成签到,获得积分10
4秒前
4秒前
5秒前
不会学术的羊完成签到,获得积分10
6秒前
huyz发布了新的文献求助10
8秒前
CC发布了新的文献求助10
9秒前
tutu发布了新的文献求助10
9秒前
9秒前
机智的皮皮虾完成签到 ,获得积分10
11秒前
11秒前
南风吹梦完成签到,获得积分10
12秒前
哈哈发布了新的文献求助10
14秒前
15秒前
风筝完成签到,获得积分10
16秒前
16秒前
乘风的法袍完成签到,获得积分10
17秒前
清爽绣连应助CC采纳,获得10
17秒前
cubicsun发布了新的文献求助10
17秒前
D调的华丽完成签到,获得积分10
18秒前
十八完成签到,获得积分10
19秒前
跳跃的翠柏完成签到,获得积分10
19秒前
慕青应助蔚111采纳,获得10
19秒前
友好灵松完成签到,获得积分10
20秒前
阳佟万言发布了新的文献求助10
22秒前
1Yer6完成签到 ,获得积分10
23秒前
科研路上的干饭桶完成签到,获得积分10
24秒前
cubicsun完成签到,获得积分10
26秒前
欢乐城完成签到,获得积分10
28秒前
29秒前
吉祥高趙发布了新的文献求助10
34秒前
35秒前
小鱼完成签到,获得积分10
37秒前
明棋发布了新的文献求助10
38秒前
wy完成签到,获得积分10
39秒前
Steven发布了新的文献求助10
39秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961020
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134825
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790305
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150