已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Soft sensor model for endpoint carbon content and temperature in BOF steelmaking based on just-in-time learning with multilayer structure preservation and sparse information enhancement

炼钢 材料科学 碳纤维 内容(测量理论) 工艺工程 冶金 计算机科学 复合材料 工程类 数学 数学分析 复合数
作者
YunKe Su,Hui Liu,Fugang Chen,Jianxun Liu,Heng Li,Xiaojun Xue
出处
期刊:Ironmaking & Steelmaking [Informa]
标识
DOI:10.1177/03019233241292384
摘要

Ensuring precise prediction of the endpoint carbon content and temperature is paramount in controlling the endpoint of the basic oxygen furnace (BOF) steelmaking process. However, due to the frequent fluctuations in real-time blowing conditions, the conventional just-in-time learning soft sensor approach encounters challenges in effectively anticipating the blowing endpoint. To address these aforementioned issues, this research introduces a novel approach known as the pattern-oriented multilayer structure preservation and sparse information enhancement model (POMLSP-SIE). This approach involves dynamically generating a dataset with the same distribution based on the characteristics of the query sample pattern. It is combined with a multi-pathway dimension reduction model to preserve multi-view spatial geometry information while reducing data dimension. The low-dimensional embedding serves as dictionaries containing various hierarchical structural characteristics. Significant information within these dictionaries is sparsely represented to amplify its influence during the regression prediction process while diminishing the impact of less relevant information. This refinement aims to rectify the problem of static regression models being weak to adapt to changing working conditions, ultimately enhancing prediction performance. The effectiveness of the proposed method is substantiated through an experimental study utilising real converter steelmaking process data, thereby confirming its practical applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ccry_完成签到 ,获得积分20
刚刚
1秒前
慕青应助1f采纳,获得10
3秒前
孙俪桐完成签到,获得积分10
3秒前
qinqiny完成签到 ,获得积分10
5秒前
ASD123发布了新的文献求助10
6秒前
华仔应助阿zhong采纳,获得10
6秒前
小白完成签到 ,获得积分10
7秒前
所所应助春携秋水揽星河采纳,获得10
8秒前
wanci应助欣慰元蝶采纳,获得10
8秒前
dfhjjj完成签到 ,获得积分10
14秒前
大模型应助zcnsdtc1991采纳,获得10
15秒前
15秒前
15秒前
17秒前
hyelachan发布了新的文献求助10
17秒前
18秒前
19秒前
19秒前
19秒前
19秒前
20秒前
科研通AI40应助星星泡饭采纳,获得10
22秒前
许ye完成签到,获得积分10
22秒前
果果科研完成签到,获得积分10
23秒前
wdn发布了新的文献求助10
23秒前
幽默不愁发布了新的文献求助10
24秒前
Akim应助科研通管家采纳,获得10
25秒前
25秒前
ding应助科研通管家采纳,获得10
25秒前
ding应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
酷酷秀发发布了新的文献求助10
25秒前
欣慰元蝶发布了新的文献求助10
27秒前
ding应助夏天猫采纳,获得10
28秒前
29秒前
29秒前
归尘应助kevin1018采纳,获得10
30秒前
hdy完成签到,获得积分10
30秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471259
求助须知:如何正确求助?哪些是违规求助? 3064129
关于积分的说明 9087605
捐赠科研通 2754938
什么是DOI,文献DOI怎么找? 1511647
邀请新用户注册赠送积分活动 698541
科研通“疑难数据库(出版商)”最低求助积分说明 698423