Photomechanically responsive dynamic molecular crystals are central to developing efficient, rapid, and robust materials capable of conversion of light energy to mechanical work. However, unlike some other, mainly photochromic molecular solar thermal energy storage (MOST) systems, solids in which the photoinduced [2+2] cycloaddition undergoes have not been explored to power reversible actuation, despite that this reaction system carries an unexplored potential in the heavily strained bonds of the cyclobutane ring, the common chemical moiety in the natural products. In this study, we propose that broadband-light-induced [2+2] cycloaddition can be used to store energy and actuate dynamic organic crystals by irradiation with visible light. The prototypical material, pyrenylvinylpyrylium tetrafluoroborate (1-PVPyL), undergoes a topochemical [2+2] cycloaddition induced not only by ultraviolet radiation (365 nm) but also by monochromatic green light (532 nm), red light (620 nm) and broadband visible light in a single-crystal-to-single-crystal manner, causing its crystals to bend. The crystals effectively act as energy depots, where the reverse deformation can be initiated by heating and the stored energy is released via thermal cycloreversion reaction. Given the ubiquity of the [2+2] cycloaddition in the solid state, the current study invites the development of new dimeric architectures that utilize sunlight for energy storage.