已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Physically‐Based Machine Learning Approach Inspires an Analytical Model for Spider Silk Supercontraction

材料科学 蜘蛛丝 丝绸 蜘蛛 高分子科学 人工智能 纳米技术 计算机科学 复合材料 物理 天文
作者
Vincenzo Fazio,Ali D. Malay,Keiji Numata,Nicola M. Pugno,Giuseppe Puglisi
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202420095
摘要

Abstract Scientific and industrial interest in spider silk stems from its remarkable properties, including supercontraction—an activation effect induced by wetting. Understanding the underlying molecular scale mechanisms is then also crucial for biomimetic applications. In this study, it is illustrated how the effective integration of physically‐based machine learning with scientific interpretations can lead to significant physical insights and enhance the predictive power of an existing microstructure‐inspired model. A symbolic data modeling technique, known as Evolutionary Polynomial Regression (EPR), is employed, which integrates regression capabilities with the genetic programming paradigm, enabling the derivation of explicit analytical formulas for deducing structure‐function relationships emerging across different scales, to investigate the impact of protein primary structures on supercontraction. This analysis is based on recent multiscale experimental data encompassing a diverse range of scales and a wide variety of different spider silks. Specifically, this analysis reveals a correlation between supercontraction and the repeat length of the MaSp2 protein as well as the polyalanine region of MaSp1. Straightforward microstructural interpretations that align with experimental observations are proposed. The MaSp2 repeat length governs the cross‐links that stabilize amorphous chains in dry conditions. When hydrated, these cross‐links are disrupted, leading to entropic coiling and fiber contraction. Furthermore, the length of the polyalanine region in MaSp1 plays a critical role in supercontraction by restricting the extent of crystal misalignment necessary to accommodate the shortening of the soft regions. The validation of the model is accomplished by comparing experimental data from the Silkome database with theoretical predictions derived from both the machine learning and the proposed model. The enhanced model offers a more comprehensive understanding of supercontraction and establishes a link between the primary structure of silk proteins and their macroscopic behavior, thereby advancing the field of biomimetic applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Wish完成签到,获得积分10
3秒前
5秒前
ALEX完成签到,获得积分10
5秒前
雪白康发布了新的文献求助10
7秒前
7秒前
林间发布了新的文献求助10
8秒前
屈灿完成签到,获得积分10
11秒前
生生不息完成签到,获得积分20
11秒前
林间完成签到,获得积分10
14秒前
ding应助James采纳,获得10
14秒前
温暖海露发布了新的文献求助10
16秒前
17秒前
lifuqiang完成签到 ,获得积分10
18秒前
BEYOND啊完成签到 ,获得积分10
19秒前
李李原上草完成签到 ,获得积分10
21秒前
丽丽完成签到 ,获得积分10
22秒前
赵十七发布了新的文献求助30
22秒前
俯冲食堂完成签到,获得积分10
23秒前
23秒前
24秒前
27秒前
Chris发布了新的文献求助10
30秒前
汤汤完成签到 ,获得积分10
31秒前
科研小白爱科研完成签到,获得积分10
35秒前
36秒前
38秒前
38秒前
39秒前
liu发布了新的文献求助10
42秒前
42秒前
43秒前
James发布了新的文献求助10
44秒前
46秒前
领导范儿应助阿文采纳,获得10
46秒前
陶醉健柏完成签到,获得积分10
48秒前
居蓝完成签到 ,获得积分10
48秒前
49秒前
50秒前
陶醉健柏发布了新的文献求助10
52秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555627
求助须知:如何正确求助?哪些是违规求助? 3131330
关于积分的说明 9390563
捐赠科研通 2830968
什么是DOI,文献DOI怎么找? 1556243
邀请新用户注册赠送积分活动 726475
科研通“疑难数据库(出版商)”最低求助积分说明 715803