LeaNet: Lightweight U-shaped architecture for high-performance skin cancer image segmentation

计算机科学 分割 图像分割 特征(语言学) 人工智能 像素 模式识别(心理学) 计算机视觉 语言学 哲学
作者
Binbin Hu,Pan Zhou,Hongfang Yu,Yueyue Dai,Ming Wang,Shengbo Tan,Ying Sun
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:169: 107919-107919 被引量:13
标识
DOI:10.1016/j.compbiomed.2024.107919
摘要

Skin cancer diagnosis often relies on image segmentation as a crucial aid, and a high-performance segmentation can lower misdiagnosis risks. Part of the medical devices often have limited computing power for deploying image segmentation algorithms. However, existing high-performance algorithms for image segmentation primarily rely on computationally intensive large models, making it challenging to meet the lightweight deployment requirement of medical devices. State-of-the-art lightweight models are not able to capture both local and global feature information of lesion edges due to their model structures, result in pixel loss of lesion edge. To tackle this problem, we propose LeaNet, a novel U-shaped network for high-performance yet lightweight skin cancer image segmentation. Specifically, LeaNet employs multiple attention blocks in a lightweight symmetric U-shaped design. Each blocks contains a dilated efficient channel attention (DECA) module for global and local contour information and an inverted external attention (IEA) module to improve information correlation between data samples. Additionally, LeaNet uses an attention bridge (AB) module to connect the left and right sides of the U-shaped architecture, thereby enhancing the model's multi-level feature extraction capability. We tested our model on ISIC2017 and ISIC2018 datasets. Compared with large models like ResUNet, LeaNet improved the ACC, SEN, and SPEC metrics by 1.09 %, 2.58 %, and 1.6 %, respectively, while reducing the model's parameter number and computational complexity by 570x and 1182x. Compared with lightweight models like MALUNet, LeaNet achieved improvements of 2.07 %, 4.26 %, and 3.11 % in ACC, SEN, and SPEC, respectively, reducing the parameter number and computational complexity by 1.54x and 1.04x.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小张发布了新的文献求助20
1秒前
铜锣烧发布了新的文献求助10
2秒前
2秒前
dyfsj发布了新的文献求助10
2秒前
小蘑菇应助清爽的向秋采纳,获得10
2秒前
DMMM完成签到,获得积分10
2秒前
lwl完成签到,获得积分10
3秒前
积极马里奥完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
犹豫冰淇淋完成签到,获得积分10
5秒前
5秒前
jiang发布了新的文献求助10
6秒前
jing发布了新的文献求助10
6秒前
6秒前
7秒前
bear4f发布了新的文献求助10
7秒前
Source完成签到,获得积分20
8秒前
小蚊子完成签到,获得积分10
8秒前
lzl发布了新的文献求助10
8秒前
9秒前
孟祥勤发布了新的文献求助30
9秒前
小巧问芙发布了新的文献求助10
11秒前
zcsun0244完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
ggg发布了新的文献求助10
13秒前
刘浩然发布了新的文献求助10
14秒前
5555发布了新的文献求助10
15秒前
史道夫发布了新的文献求助10
16秒前
无情曼易发布了新的文献求助10
16秒前
17秒前
希望天下0贩的0应助lzl采纳,获得10
17秒前
Luminous发布了新的文献求助10
17秒前
纳格兰发布了新的文献求助20
17秒前
科研通AI2S应助winter采纳,获得10
17秒前
朴实若灵完成签到 ,获得积分10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145419
求助须知:如何正确求助?哪些是违规求助? 2796867
关于积分的说明 7821676
捐赠科研通 2453124
什么是DOI,文献DOI怎么找? 1305464
科研通“疑难数据库(出版商)”最低求助积分说明 627487
版权声明 601464