Automated Detection of Cervical Spinal Stenosis and Cord Compression via Vision Transformer and Rules-Based Classification

医学 绳索 狭窄 脊髓 脊髓压迫 椎管狭窄 放射科 外科 精神科 腰椎
作者
David L. Payne,Xuan Xu,Farshid Faraji,Kevin John,Katherine Ferra Pradas,Vahni Vishala Bernard,Lev Bangiyev,Prateek Prasanna
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:45 (4): 432-438 被引量:4
标识
DOI:10.3174/ajnr.a8141
摘要

BACKGROUND AND PURPOSE:

Cervical spinal cord compression, defined as spinal cord deformity and severe narrowing of the spinal canal in the cervical region, can lead to severe clinical consequences, including intractable pain, sensory disturbance, paralysis, and even death, and may require emergent intervention to prevent negative outcomes. Despite the critical nature of cord compression, no automated tool is available to alert clinical radiologists to the presence of such findings. This study aims to demonstrate the ability of a vision transformer (ViT) model for the accurate detection of cervical cord compression.

MATERIALS AND METHODS:

A clinically diverse cohort of 142 cervical spine MRIs was identified, 34% of which were normal or had mild stenosis, 31% with moderate stenosis, and 35% with cord compression. Utilizing gradient-echo images, slices were labeled as no cord compression/mild stenosis, moderate stenosis, or severe stenosis/cord compression. Segmentation of the spinal canal was performed and confirmed by neuroradiology faculty. A pretrained ViT model was fine-tuned to predict section-level severity by using a train:validation:test split of 60:20:20. Each examination was assigned an overall severity based on the highest level of section severity, with an examination labeled as positive for cord compression if ≥1 section was predicted in the severe category. Additionally, 2 convolutional neural network (CNN) models (ResNet50, DenseNet121) were tested in the same manner.

RESULTS:

The ViT model outperformed both CNN models at the section level, achieving section-level accuracy of 82%, compared with 72% and 78% for ResNet and DenseNet121, respectively. ViT patient-level classification achieved accuracy of 93%, sensitivity of 0.90, positive predictive value of 0.90, specificity of 0.95, and negative predictive value of 0.95. Receiver operating characteristic area under the curve was greater for ViT than either CNN.

CONCLUSIONS:

This classification approach using a ViT model and rules-based classification accurately detects the presence of cervical spinal cord compression at the patient level. In this study, the ViT model outperformed both conventional CNN approaches at the section and patient levels. If implemented into the clinical setting, such a tool may streamline neuroradiology workflow, improving efficiency and consistency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小爱吃百香果完成签到,获得积分20
刚刚
薪炭林应助空心采纳,获得30
刚刚
宫宛儿完成签到,获得积分10
刚刚
smile发布了新的文献求助10
1秒前
永远少年发布了新的文献求助10
2秒前
跳跃完成签到,获得积分20
2秒前
2秒前
3秒前
3秒前
3秒前
sansan发布了新的文献求助10
3秒前
tassssadar完成签到,获得积分10
4秒前
4秒前
通辽小判官完成签到,获得积分10
5秒前
曲蔚然发布了新的文献求助30
6秒前
liuxl完成签到,获得积分10
6秒前
长隆完成签到 ,获得积分10
8秒前
8秒前
852应助YukiXu采纳,获得10
9秒前
9秒前
jijizz发布了新的文献求助10
9秒前
yyyyy发布了新的文献求助10
9秒前
zhappy发布了新的文献求助20
9秒前
10秒前
稳重的八宝粥完成签到 ,获得积分10
11秒前
11秒前
xx关闭了xx文献求助
11秒前
12秒前
14秒前
15秒前
su发布了新的文献求助10
15秒前
小马甲应助鳗鱼灵寒采纳,获得10
15秒前
calbee发布了新的文献求助10
16秒前
lalala发布了新的文献求助10
17秒前
17秒前
张辰12536完成签到,获得积分10
18秒前
19秒前
程琳发布了新的文献求助10
19秒前
19秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808