清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automated Detection of Cervical Spinal Stenosis and Cord Compression via Vision Transformer and Rules-Based Classification

医学 绳索 狭窄 脊髓 脊髓压迫 椎管狭窄 放射科 外科 腰椎 精神科
作者
David L. Payne,Xuan Xu,Farshid Faraji,Kevin John,Katherine Ferra Pradas,Vahni Vishala Bernard,Lev Bangiyev,Prateek Prasanna
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:45 (4): 432-438 被引量:4
标识
DOI:10.3174/ajnr.a8141
摘要

BACKGROUND AND PURPOSE:

Cervical spinal cord compression, defined as spinal cord deformity and severe narrowing of the spinal canal in the cervical region, can lead to severe clinical consequences, including intractable pain, sensory disturbance, paralysis, and even death, and may require emergent intervention to prevent negative outcomes. Despite the critical nature of cord compression, no automated tool is available to alert clinical radiologists to the presence of such findings. This study aims to demonstrate the ability of a vision transformer (ViT) model for the accurate detection of cervical cord compression.

MATERIALS AND METHODS:

A clinically diverse cohort of 142 cervical spine MRIs was identified, 34% of which were normal or had mild stenosis, 31% with moderate stenosis, and 35% with cord compression. Utilizing gradient-echo images, slices were labeled as no cord compression/mild stenosis, moderate stenosis, or severe stenosis/cord compression. Segmentation of the spinal canal was performed and confirmed by neuroradiology faculty. A pretrained ViT model was fine-tuned to predict section-level severity by using a train:validation:test split of 60:20:20. Each examination was assigned an overall severity based on the highest level of section severity, with an examination labeled as positive for cord compression if ≥1 section was predicted in the severe category. Additionally, 2 convolutional neural network (CNN) models (ResNet50, DenseNet121) were tested in the same manner.

RESULTS:

The ViT model outperformed both CNN models at the section level, achieving section-level accuracy of 82%, compared with 72% and 78% for ResNet and DenseNet121, respectively. ViT patient-level classification achieved accuracy of 93%, sensitivity of 0.90, positive predictive value of 0.90, specificity of 0.95, and negative predictive value of 0.95. Receiver operating characteristic area under the curve was greater for ViT than either CNN.

CONCLUSIONS:

This classification approach using a ViT model and rules-based classification accurately detects the presence of cervical spinal cord compression at the patient level. In this study, the ViT model outperformed both conventional CNN approaches at the section and patient levels. If implemented into the clinical setting, such a tool may streamline neuroradiology workflow, improving efficiency and consistency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mic完成签到,获得积分10
2秒前
huanghe完成签到,获得积分10
36秒前
48秒前
1分钟前
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
1分钟前
TYM发布了新的文献求助10
1分钟前
1分钟前
彭晓雅发布了新的文献求助30
1分钟前
缥缈紫寒完成签到 ,获得积分10
1分钟前
404NotFOUND发布了新的文献求助10
1分钟前
甜美的成败完成签到,获得积分10
1分钟前
房天川完成签到 ,获得积分10
1分钟前
彦子完成签到 ,获得积分10
2分钟前
404NotFOUND发布了新的文献求助10
2分钟前
北国雪未消完成签到 ,获得积分0
2分钟前
学生信的大叔完成签到,获得积分10
2分钟前
kangshuai完成签到,获得积分0
2分钟前
波波完成签到 ,获得积分10
2分钟前
2分钟前
qq158014169完成签到 ,获得积分10
2分钟前
2分钟前
酷波er应助hyc采纳,获得10
2分钟前
2分钟前
new1完成签到,获得积分10
3分钟前
MM完成签到 ,获得积分10
3分钟前
彭晓雅完成签到 ,获得积分10
3分钟前
whitepiece完成签到,获得积分10
3分钟前
枯藤老柳树完成签到,获得积分10
3分钟前
3分钟前
3分钟前
漫天白沙完成签到 ,获得积分10
3分钟前
naczx完成签到,获得积分0
4分钟前
钮祜禄萱完成签到 ,获得积分10
4分钟前
可爱沛蓝完成签到 ,获得积分10
4分钟前
4分钟前
404NotFOUND发布了新的文献求助10
5分钟前
dx完成签到,获得积分10
5分钟前
debu9完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5303711
求助须知:如何正确求助?哪些是违规求助? 4450395
关于积分的说明 13849354
捐赠科研通 4337169
什么是DOI,文献DOI怎么找? 2381284
邀请新用户注册赠送积分活动 1376299
关于科研通互助平台的介绍 1343088