已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated Detection of Cervical Spinal Stenosis and Cord Compression via Vision Transformer and Rules-Based Classification

医学 绳索 狭窄 脊髓 脊髓压迫 椎管狭窄 放射科 外科 精神科 腰椎
作者
David L. Payne,Xuan Xu,Farshid Faraji,Kevin John,Katherine Ferra Pradas,Vahni Vishala Bernard,Lev Bangiyev,Prateek Prasanna
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:45 (4): 432-438 被引量:4
标识
DOI:10.3174/ajnr.a8141
摘要

BACKGROUND AND PURPOSE:

Cervical spinal cord compression, defined as spinal cord deformity and severe narrowing of the spinal canal in the cervical region, can lead to severe clinical consequences, including intractable pain, sensory disturbance, paralysis, and even death, and may require emergent intervention to prevent negative outcomes. Despite the critical nature of cord compression, no automated tool is available to alert clinical radiologists to the presence of such findings. This study aims to demonstrate the ability of a vision transformer (ViT) model for the accurate detection of cervical cord compression.

MATERIALS AND METHODS:

A clinically diverse cohort of 142 cervical spine MRIs was identified, 34% of which were normal or had mild stenosis, 31% with moderate stenosis, and 35% with cord compression. Utilizing gradient-echo images, slices were labeled as no cord compression/mild stenosis, moderate stenosis, or severe stenosis/cord compression. Segmentation of the spinal canal was performed and confirmed by neuroradiology faculty. A pretrained ViT model was fine-tuned to predict section-level severity by using a train:validation:test split of 60:20:20. Each examination was assigned an overall severity based on the highest level of section severity, with an examination labeled as positive for cord compression if ≥1 section was predicted in the severe category. Additionally, 2 convolutional neural network (CNN) models (ResNet50, DenseNet121) were tested in the same manner.

RESULTS:

The ViT model outperformed both CNN models at the section level, achieving section-level accuracy of 82%, compared with 72% and 78% for ResNet and DenseNet121, respectively. ViT patient-level classification achieved accuracy of 93%, sensitivity of 0.90, positive predictive value of 0.90, specificity of 0.95, and negative predictive value of 0.95. Receiver operating characteristic area under the curve was greater for ViT than either CNN.

CONCLUSIONS:

This classification approach using a ViT model and rules-based classification accurately detects the presence of cervical spinal cord compression at the patient level. In this study, the ViT model outperformed both conventional CNN approaches at the section and patient levels. If implemented into the clinical setting, such a tool may streamline neuroradiology workflow, improving efficiency and consistency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助幽梦挽歌采纳,获得10
刚刚
深情安青应助1073980795采纳,获得10
刚刚
刚刚
完美世界应助灰原采纳,获得10
3秒前
默默洋葱完成签到,获得积分10
4秒前
ll完成签到 ,获得积分10
6秒前
zhan发布了新的文献求助10
6秒前
彭于晏应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
7秒前
Orange应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
千跃应助科研通管家采纳,获得20
7秒前
领导范儿应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
9秒前
不加香菜完成签到 ,获得积分10
11秒前
12秒前
二七发布了新的文献求助10
12秒前
幽梦挽歌发布了新的文献求助10
14秒前
风中巧曼发布了新的文献求助10
14秒前
何1完成签到 ,获得积分10
15秒前
15秒前
充电宝应助Chalo采纳,获得10
16秒前
hsr_eye发布了新的文献求助10
16秒前
科研通AI5应助芯之痕采纳,获得10
16秒前
叶强发布了新的文献求助10
22秒前
莫里亚蒂发布了新的文献求助10
22秒前
JamesPei应助二一采纳,获得10
23秒前
夕阳发布了新的文献求助10
23秒前
24秒前
25秒前
jinshiyu58发布了新的文献求助10
25秒前
drsxtang完成签到,获得积分10
26秒前
大模型应助樱桃猴子采纳,获得10
26秒前
cc完成签到 ,获得积分10
27秒前
28秒前
BaBa发布了新的文献求助10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976512
求助须知:如何正确求助?哪些是违规求助? 3520548
关于积分的说明 11203949
捐赠科研通 3257210
什么是DOI,文献DOI怎么找? 1798648
邀请新用户注册赠送积分活动 877835
科研通“疑难数据库(出版商)”最低求助积分说明 806555