亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated Detection of Cervical Spinal Stenosis and Cord Compression via Vision Transformer and Rules-Based Classification

医学 绳索 狭窄 脊髓 脊髓压迫 椎管狭窄 放射科 外科 精神科 腰椎
作者
David L. Payne,Xuan Xu,Farshid Faraji,Kevin John,Katherine Ferra Pradas,Vahni Vishala Bernard,Lev Bangiyev,Prateek Prasanna
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:45 (4): 432-438 被引量:4
标识
DOI:10.3174/ajnr.a8141
摘要

BACKGROUND AND PURPOSE:

Cervical spinal cord compression, defined as spinal cord deformity and severe narrowing of the spinal canal in the cervical region, can lead to severe clinical consequences, including intractable pain, sensory disturbance, paralysis, and even death, and may require emergent intervention to prevent negative outcomes. Despite the critical nature of cord compression, no automated tool is available to alert clinical radiologists to the presence of such findings. This study aims to demonstrate the ability of a vision transformer (ViT) model for the accurate detection of cervical cord compression.

MATERIALS AND METHODS:

A clinically diverse cohort of 142 cervical spine MRIs was identified, 34% of which were normal or had mild stenosis, 31% with moderate stenosis, and 35% with cord compression. Utilizing gradient-echo images, slices were labeled as no cord compression/mild stenosis, moderate stenosis, or severe stenosis/cord compression. Segmentation of the spinal canal was performed and confirmed by neuroradiology faculty. A pretrained ViT model was fine-tuned to predict section-level severity by using a train:validation:test split of 60:20:20. Each examination was assigned an overall severity based on the highest level of section severity, with an examination labeled as positive for cord compression if ≥1 section was predicted in the severe category. Additionally, 2 convolutional neural network (CNN) models (ResNet50, DenseNet121) were tested in the same manner.

RESULTS:

The ViT model outperformed both CNN models at the section level, achieving section-level accuracy of 82%, compared with 72% and 78% for ResNet and DenseNet121, respectively. ViT patient-level classification achieved accuracy of 93%, sensitivity of 0.90, positive predictive value of 0.90, specificity of 0.95, and negative predictive value of 0.95. Receiver operating characteristic area under the curve was greater for ViT than either CNN.

CONCLUSIONS:

This classification approach using a ViT model and rules-based classification accurately detects the presence of cervical spinal cord compression at the patient level. In this study, the ViT model outperformed both conventional CNN approaches at the section and patient levels. If implemented into the clinical setting, such a tool may streamline neuroradiology workflow, improving efficiency and consistency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jayden完成签到 ,获得积分10
30秒前
33秒前
39秒前
45秒前
1分钟前
狒狒发布了新的文献求助10
1分钟前
狒狒完成签到,获得积分10
1分钟前
1分钟前
GAOGONGZI完成签到,获得积分10
1分钟前
2分钟前
阿北发布了新的文献求助10
2分钟前
Airi发布了新的文献求助10
2分钟前
Wang完成签到 ,获得积分20
2分钟前
2分钟前
Airi完成签到,获得积分10
2分钟前
Milo完成签到,获得积分10
2分钟前
完美耦合发布了新的文献求助10
2分钟前
含糊的茹妖完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
实力不允许完成签到 ,获得积分10
5分钟前
完美耦合完成签到,获得积分10
5分钟前
1437594843完成签到 ,获得积分10
5分钟前
Owen应助zz采纳,获得10
10分钟前
小二郎应助科研通管家采纳,获得30
10分钟前
LIVE完成签到,获得积分10
11分钟前
12分钟前
12分钟前
lizhang发布了新的文献求助10
12分钟前
hilygogo完成签到,获得积分10
12分钟前
露露完成签到,获得积分10
15分钟前
houha233发布了新的文献求助10
15分钟前
16分钟前
宁异勿同完成签到,获得积分10
16分钟前
16分钟前
科研通AI2S应助踏实的芸遥采纳,获得30
17分钟前
17分钟前
17分钟前
poki完成签到 ,获得积分10
17分钟前
zz发布了新的文献求助10
17分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139600
求助须知:如何正确求助?哪些是违规求助? 2790479
关于积分的说明 7795340
捐赠科研通 2446926
什么是DOI,文献DOI怎么找? 1301511
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176