Utilization of the corticomedullary difference in magnetic resonance imaging-derived apparent diffusion coefficient for noninvasive assessment of chronic kidney disease in type 2 diabetes

肾功能 肾脏疾病 磁共振成像 医学 有效扩散系数 泌尿科 接收机工作特性 肌酐 活检 单变量分析 糖尿病 放射科 内科学 内分泌学 多元分析
作者
Suyan Duan,Luhan Geng,Lu Fang,Chen Chen,Ling Jiang,Si Chen,Chengning Zhang,Zhimin Huang,Ming Zeng,Bin Sun,Bo Zhang,Huijuan Mao,Changying Xing,Yu‐Dong Zhang,Yanggang Yuan
出处
期刊:Diabetes and Metabolic Syndrome: Clinical Research and Reviews [Elsevier]
卷期号:18 (2): 102963-102963 被引量:2
标识
DOI:10.1016/j.dsx.2024.102963
摘要

Accumulating data demonstrated that the cortico-medullary difference in apparent diffusion coefficient (ΔADC) of diffusion-weighted magnetic resonance imaging (DWI) was a better correlation with kidney fibrosis, tubular atrophy progression, and a predictor of kidney function evolution in chronic kidney disease (CKD).We aimed to assess the value of ΔADC in evaluating disease severity, differential diagnosis, and the prognostic risk stratification for patients with type 2 diabetes (T2D) and CKD.Total 119 patients with T2D and CKD who underwent renal MRI were prospectively enrolled. Of them, 89 patients had performed kidney biopsy for pathological examination, including 38 patients with biopsy-proven diabetic kidney disease (DKD) and 51 patients with biopsy-proven non-diabetic kidney disease (NDKD) and Mix (DKD + NDKD). Clinicopathological characteristics were compared according to different ΔADC levels. Moreover, univariate and multivariate-linear regression analyses were performed to explore whether ΔADC was independently associated with estimated glomerular filtration rate (eGFR) and urinary albumin creatinine ratio (UACR). The diagnostic performance of ΔADC for discriminating DKD from NDKD + Mix was evaluated by receiver operating characteristic (ROC) analysis. In addition, an individual's 2- or 5-year risk probability of progressing to end-stage kidney disease (ESKD) was calculated by the kidney failure risk equation (KFRE). The effect of ΔADC on prognostic risk stratification was assessed. Additionally, net reclassification improvement (NRI) was used to evaluate the model performance.All enrolled patients had a median ΔADC level of 86 (IQR 28, 155) × 10-6 mm2/s. ΔADC significantly decreased across the increasing staging of CKD (P < 0.001). Moreover, those with pathological-confirmed DKD has a significantly lower level of ΔADC than those with NDKD and Mix (P < 0.001). It showed that ΔADC was independently associated with eGFR (β = 1.058, 95% CI = [1.002,1.118], P = 0.042) and UACR (β = -3.862, 95% CI = [-7.360, -0.365], P = 0.031) at multivariate linear regression analyses. Besides, ΔADC achieved an AUC of 0.707 (71% sensitivity and 75% specificity) and AUC of 0.823 (94% sensitivity and 67% specificity) for discriminating DKD from NDKD + Mix and higher ESKD risk categories (≥50% at 5 years; ≥10% at 2 years) from lower risk categories (<50% at 5 years; <10% at 2 years). Accordingly, the optimal cutoff value of ΔADC for higher ESKD risk categories was 66 × 10-6 mm2/s, and the group with the low-cutoff level of ΔADC group was associated with 1.232 -fold (95% CI 1.086, 1.398) likelihood of higher ESKD risk categories as compared to the high-cutoff level of ΔADC group in the fully-adjusted model. Reclassification analyses confirmed that the final adjusted model improved NRI.ΔADC was strongly associated with eGFR and UACR in patients with T2D and CKD. More importantly, baseline ΔADC was predictive of higher ESKD risk, independently of significant clinical confounding. Specifically, ΔADC <78 × 10-6 mm2/s and <66 × 10-6 mm2/s would help to identify T2D patients with the diagnosis of DKD and higher ESKD risk categories, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
汉堡包应助嘎嘎嘎采纳,获得10
1秒前
科研通AI5应助纯纯小白采纳,获得30
1秒前
66应助conghuiqu采纳,获得10
1秒前
机智的代云完成签到,获得积分20
1秒前
SciGPT应助Tessa采纳,获得10
2秒前
2秒前
4秒前
CodeCraft应助缥缈斌采纳,获得10
5秒前
5秒前
七子完成签到 ,获得积分10
5秒前
6秒前
零度完成签到,获得积分10
7秒前
阿褚完成签到 ,获得积分10
7秒前
LALALA卫卫J发布了新的文献求助30
8秒前
Lucas应助狂野芷卉采纳,获得10
8秒前
大模型应助勾勾1991采纳,获得10
8秒前
8秒前
万能图书馆应助舒适路人采纳,获得10
9秒前
10秒前
芋圆粒应助小雪糕采纳,获得10
10秒前
清风完成签到,获得积分10
11秒前
笑点低的映梦完成签到,获得积分10
12秒前
淡定鱼发布了新的文献求助10
12秒前
13秒前
情怀应助天真的傲芙采纳,获得10
13秒前
酷波er应助millie采纳,获得10
13秒前
14秒前
14秒前
靓丽的冰蓝完成签到,获得积分10
14秒前
JamesPei应助庞扬采纳,获得10
14秒前
今后应助遥感小虫采纳,获得10
14秒前
18秒前
实在不知道什么叫完成签到,获得积分10
18秒前
彩色青亦完成签到,获得积分10
18秒前
star发布了新的文献求助10
19秒前
caicifeng发布了新的文献求助10
19秒前
VPN不好用发布了新的文献求助10
21秒前
21秒前
wjzzzz完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3523168
求助须知:如何正确求助?哪些是违规求助? 3104124
关于积分的说明 9268973
捐赠科研通 2801046
什么是DOI,文献DOI怎么找? 1537307
邀请新用户注册赠送积分活动 715489
科研通“疑难数据库(出版商)”最低求助积分说明 708835