清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An enhanced particle swarm optimization with position update for optimal feature selection

粒子群优化 计算机科学 特征选择 职位(财务) 选择(遗传算法) 多群优化 特征(语言学) 人工智能 群体行为 数学优化 机器学习 数学 财务 语言学 哲学 经济
作者
Sani Tijjani,Mohd Nadhir Ab Wahab,Mohd Halim Mohd Noor
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:247: 123337-123337 被引量:28
标识
DOI:10.1016/j.eswa.2024.123337
摘要

In recent years, feature selection research has quickly advanced to keep up with the age of developing expert systems. This is because the applications of these systems sometimes need massive datasets. Researchers who have an interest in creating novel feature selection methods or enhancing existing technologies have grown their interest in this topic. The current version of binary PSO (BPSO) is not developed as well as continuous PSO and does not follow the main principles of the standard PSO algorithm. Unlike the continuous version of the PSO, in BPSO, particle position is restricted to the Hamming space. Thus, there is no risk of swarm divergence, but the problem of premature convergence of the swarm arises. This paper presents an enhanced particle swarm optimization employed for feature selection to tackle the limitations of the current version of binary BPSO. Its primary quality is the application of a position update mechanism to appropriately select optimal features. The position update mechanism is designed to avoid the premature convergence issue suffered by BPSO, by determining the probability of the particles switching positions using position values rather than velocity. Two variant methods for determining the probability of changing the position of a particle element were introduced. These result in the two variants of enhanced binary particle swarm optimization (EBPSO) for feature selection, called EBPSO1 and EBPSO2. Several experiments were performed to analyze the effectiveness of the proposed method and compare it with state-of-the-art feature selection methods based on eighteen frequently used benchmark datasets. The experimental findings demonstrated that the proposed approach generated the most accurate classification in contrast to the alternative feature selection approach on most of the datasets. As a result, it can be inferred based on the outcomes obtained that this proposed approach performs significantly superior to the other state-of-the-art feature selection approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
双眼皮跳蚤完成签到,获得积分10
2秒前
fawr完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
7秒前
larry完成签到,获得积分10
11秒前
14秒前
蒲黄妗子完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
27秒前
shenglll完成签到 ,获得积分10
29秒前
嗡嗡完成签到,获得积分10
35秒前
名侦探柯基完成签到 ,获得积分10
39秒前
40秒前
呆萌的雁荷完成签到,获得积分10
44秒前
量子星尘发布了新的文献求助10
45秒前
万默完成签到 ,获得积分10
50秒前
傻傻的哈密瓜完成签到,获得积分10
51秒前
小飞七完成签到 ,获得积分10
52秒前
53秒前
orixero应助萝卜猪采纳,获得10
54秒前
量子星尘发布了新的文献求助10
59秒前
John完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
慎之完成签到 ,获得积分10
1分钟前
若眠完成签到 ,获得积分10
1分钟前
萝卜猪发布了新的文献求助10
1分钟前
小张完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
紫色de泡沫完成签到,获得积分10
1分钟前
微笑高山完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
man完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
liuww0778完成签到 ,获得积分20
2分钟前
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666449
求助须知:如何正确求助?哪些是违规求助? 3225448
关于积分的说明 9763109
捐赠科研通 2935282
什么是DOI,文献DOI怎么找? 1607606
邀请新用户注册赠送积分活动 759271
科研通“疑难数据库(出版商)”最低求助积分说明 735188