反推
有界函数
跟踪误差
控制理论(社会学)
计算机科学
非线性系统
控制器(灌溉)
趋同(经济学)
转化(遗传学)
人工神经网络
近似误差
功能(生物学)
边界(拓扑)
控制(管理)
数学优化
自适应控制
数学
算法
人工智能
物理
基因
数学分析
生物
经济
进化生物学
化学
量子力学
生物化学
经济增长
农学
作者
Yan Yao,Jieqing Tan,Yangang Yao,Xu Zhang,Peng Chen
出处
期刊:Neurocomputing
[Elsevier]
日期:2023-12-28
卷期号:571: 127200-127200
被引量:3
标识
DOI:10.1016/j.neucom.2023.127200
摘要
The issue of adaptive prescribed-time prescribed performance control (PTPPC) for stochastic nonlinear input-delay systems with arbitrary bounded initial error is discussed in this paper. With the help of prescribed-time prescribed performance function (PTPPF) and a novel switching model-based error transformation function, the proposed method can ensure that the tracking error reaches the specified accuracy within an arbitrary prescribed time, and another significant advantage is that it removes the restriction that the initial error must be within the constrained boundary of existing prescribed performance control (PPC) methods. In addition, an auxiliary system is introduced to manipulate the input delay, which eliminates the limitations of computational complexity and small delays in the Padé approximation method. By combining backstepping with neural network approximation technology, a novel controller is raised, under which the tracking accuracy and convergence time can be pledged, and the whole signals of closed-loop system are bounded in probability. Simulation experiments testify the effectiveness of the control approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI