Rotary Machinery Fault Diagnosis Based on Split Attention Mechanism and Graph Convolutional Domain Adaptive Adversarial Network

计算机科学 卷积神经网络 分类器(UML) 人工智能 数据挖掘 图形 残余物 模式识别(心理学) 断层(地质) 机器学习 算法 理论计算机科学 地震学 地质学
作者
Haitao Wang,Mingjun Li,Zelin Liu,Xiyang Dai,Ruihua Wang,Lichen Shi
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (4): 5399-5413 被引量:5
标识
DOI:10.1109/jsen.2023.3348597
摘要

In recent years, the unsupervised domain adaptation (UDA) technique has achieved remarkable success in cross-domain fault diagnosis of rotating machinery. In UDA, three pivotal pieces of information—namely, class labels, domain labels, and data structures, play a critical role in establishing a connection between labeled samples of the source domain and unlabeled samples of the target domain. Most research methods use only one or two of these types of information, ignoring the importance of data structure. In addition, global domain adaptive techniques are typically used, ignoring the relationships between subdomains. The conventional convolutional neural network (CNN) exhibits limited capability in extracting essential fault-related information, thereby significantly affecting the accuracy of fault identification. To address this problem, we propose the Graph Convolutional Domain Adaptive Adversarial Network (SPGCAN) as a novel approach for the intelligent diagnosis of faults in rotating machinery. A classifier and a domain discriminator are used to extract the first two types of information. Using residual networks with a multichannel split attention mechanism, graph CNNs for the modeling of data structures. We use a combination of local maximum mean discrepancy (LMMD) and adversarial domain adaptation methods to align the subdomain distributions and reduce the distributional differences between the relevant subdomains and the global. Case Western Reserve University (CWRU) bearing dataset and planetary gearbox dataset are used for cross-domain fault diagnosis and are compared with current mainstream UDA methods. Ultimately, SPGCAN demonstrates better fault identification accuracy across 24 cross-domain fault diagnosis tasks on both datasets, thus substantiating the method's effectiveness and superiority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lant0ng完成签到 ,获得积分10
1秒前
摩卡发布了新的文献求助30
1秒前
辞南发布了新的文献求助10
2秒前
1762120发布了新的文献求助10
4秒前
tdtk发布了新的文献求助10
4秒前
狸狸发布了新的文献求助10
5秒前
5秒前
大模型应助Crazy111采纳,获得10
6秒前
Owen应助刘桔采纳,获得10
6秒前
史萌应助zz采纳,获得10
9秒前
小马甲应助123采纳,获得10
10秒前
11秒前
13秒前
医学生的小宝库完成签到,获得积分20
13秒前
华仔应助摩卡采纳,获得10
13秒前
13秒前
14秒前
落后的小蕊完成签到,获得积分10
16秒前
Matrix发布了新的文献求助10
17秒前
17秒前
刘桔发布了新的文献求助10
18秒前
Crazy111发布了新的文献求助10
19秒前
19秒前
深情安青应助默默千亦采纳,获得10
20秒前
21秒前
21秒前
传奇3应助le采纳,获得15
21秒前
石石刘发布了新的文献求助10
22秒前
Stardust发布了新的文献求助10
22秒前
23秒前
不要碧莲发布了新的文献求助10
23秒前
23秒前
25秒前
25秒前
26秒前
舒心无招发布了新的文献求助10
26秒前
洁净方盒发布了新的文献求助10
26秒前
Yuanyuan发布了新的文献求助30
28秒前
老橘子发布了新的文献求助50
28秒前
傲娇如天发布了新的文献求助10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952993
求助须知:如何正确求助?哪些是违规求助? 3498423
关于积分的说明 11091766
捐赠科研通 3229049
什么是DOI,文献DOI怎么找? 1785199
邀请新用户注册赠送积分活动 869228
科研通“疑难数据库(出版商)”最低求助积分说明 801411