Rotary Machinery Fault Diagnosis Based on Split Attention Mechanism and Graph Convolutional Domain Adaptive Adversarial Network

计算机科学 卷积神经网络 分类器(UML) 人工智能 数据挖掘 图形 残余物 模式识别(心理学) 断层(地质) 机器学习 算法 理论计算机科学 地震学 地质学
作者
Haitao Wang,Mingjun Li,Zelin Liu,Xiyang Dai,Ruihua Wang,Lichen Shi
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 5399-5413 被引量:14
标识
DOI:10.1109/jsen.2023.3348597
摘要

In recent years, the unsupervised domain adaptation (UDA) technique has achieved remarkable success in cross-domain fault diagnosis of rotating machinery. In UDA, three pivotal pieces of information—namely, class labels, domain labels, and data structures, play a critical role in establishing a connection between labeled samples of the source domain and unlabeled samples of the target domain. Most research methods use only one or two of these types of information, ignoring the importance of data structure. In addition, global domain adaptive techniques are typically used, ignoring the relationships between subdomains. The conventional convolutional neural network (CNN) exhibits limited capability in extracting essential fault-related information, thereby significantly affecting the accuracy of fault identification. To address this problem, we propose the Graph Convolutional Domain Adaptive Adversarial Network (SPGCAN) as a novel approach for the intelligent diagnosis of faults in rotating machinery. A classifier and a domain discriminator are used to extract the first two types of information. Using residual networks with a multichannel split attention mechanism, graph CNNs for the modeling of data structures. We use a combination of local maximum mean discrepancy (LMMD) and adversarial domain adaptation methods to align the subdomain distributions and reduce the distributional differences between the relevant subdomains and the global. Case Western Reserve University (CWRU) bearing dataset and planetary gearbox dataset are used for cross-domain fault diagnosis and are compared with current mainstream UDA methods. Ultimately, SPGCAN demonstrates better fault identification accuracy across 24 cross-domain fault diagnosis tasks on both datasets, thus substantiating the method's effectiveness and superiority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是老大应助十一采纳,获得10
1秒前
Fine发布了新的文献求助10
1秒前
北岭雪兮发布了新的文献求助10
1秒前
2秒前
樱花打落雨完成签到,获得积分10
2秒前
2秒前
成果1111发布了新的文献求助20
2秒前
sen完成签到,获得积分10
2秒前
白蓝发布了新的文献求助10
3秒前
小野菌发布了新的文献求助10
3秒前
牙牙发布了新的文献求助10
3秒前
3秒前
3秒前
深情安青应助龚昊采纳,获得10
4秒前
芽芽乐完成签到 ,获得积分10
4秒前
xx发布了新的文献求助20
4秒前
21发布了新的文献求助20
4秒前
量子星尘发布了新的文献求助10
4秒前
独特的舞仙完成签到,获得积分10
4秒前
大个应助zzz采纳,获得10
5秒前
思源应助AX采纳,获得10
5秒前
博林大师完成签到,获得积分10
5秒前
5秒前
jingmishensi完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
哈哈哈发布了新的文献求助20
7秒前
小陈完成签到,获得积分10
7秒前
7秒前
8秒前
细腻亦巧发布了新的文献求助10
9秒前
full发布了新的文献求助30
9秒前
里尔吉恩完成签到,获得积分10
9秒前
微笑的鱼完成签到,获得积分10
9秒前
9秒前
9秒前
喵喵盖被完成签到,获得积分10
9秒前
北岭雪兮完成签到 ,获得积分10
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587207
求助须知:如何正确求助?哪些是违规求助? 4670321
关于积分的说明 14782456
捐赠科研通 4622355
什么是DOI,文献DOI怎么找? 2531197
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066