MultiGPrompt for Multi-Task Pre-Training and Prompting on Graphs

计算机科学 杠杆(统计) 借口 机器学习 人工智能 图形 利用 理论计算机科学 计算机安全 政治 政治学 法学
作者
Xingtong Yu,Chang Zhou,Yuan Fang,Xinming Zhang
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2312.03731
摘要

Graphs can inherently model interconnected objects on the Web, thereby facilitating a series of Web applications, such as web analyzing and content recommendation. Recently, Graph Neural Networks (GNNs) have emerged as a mainstream technique for graph representation learning. However, their efficacy within an end-to-end supervised framework is significantly tied to the availabilityof task-specific labels. To mitigate labeling costs and enhance robustness in few-shot settings, pre-training on self-supervised tasks has emerged as a promising method, while prompting has been proposed to further narrow the objective gap between pretext and downstream tasks. Although there has been some initial exploration of prompt-based learning on graphs, they primarily leverage a single pretext task, resulting in a limited subset of general knowledge that could be learned from the pre-training data. Hence, in this paper, we propose MultiGPrompt, a novel multi-task pre-training and prompting framework to exploit multiple pretext tasks for more comprehensive pre-trained knowledge. First, in pre-training, we design a set of pretext tokens to synergize multiple pretext tasks. Second, we propose a dual-prompt mechanism consisting of composed and open prompts to leverage task-specific and global pre-training knowledge, to guide downstream tasks in few-shot settings. Finally, we conduct extensive experiments on six public datasets to evaluate and analyze MultiGPrompt.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123456发布了新的文献求助10
刚刚
XXXp发布了新的文献求助10
1秒前
木棉发布了新的文献求助10
2秒前
2秒前
weilao发布了新的文献求助10
3秒前
4秒前
开朗可行完成签到,获得积分10
6秒前
星辰大海应助栗子栗栗子采纳,获得10
7秒前
blaiteness完成签到,获得积分10
7秒前
7秒前
核桃应助123456采纳,获得30
8秒前
张光光发布了新的文献求助10
9秒前
SciGPT应助苏哈托采纳,获得10
10秒前
烟花应助现代子默采纳,获得10
10秒前
10秒前
无花果应助钙离子采纳,获得10
10秒前
Valora关注了科研通微信公众号
11秒前
11秒前
第三人称的自己完成签到,获得积分10
12秒前
ding应助南宫冰夏采纳,获得10
14秒前
14秒前
李健的粉丝团团长应助XXXp采纳,获得10
15秒前
星辰大海应助guo采纳,获得10
15秒前
16秒前
123完成签到 ,获得积分10
16秒前
16秒前
个性的汲发布了新的文献求助10
17秒前
17秒前
19秒前
556677y发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
xiaochao发布了新的文献求助10
20秒前
21秒前
22秒前
22秒前
钙离子发布了新的文献求助10
23秒前
23秒前
雪白十三发布了新的文献求助10
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962134
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140655
捐赠科研通 3241036
什么是DOI,文献DOI怎么找? 1791184
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803371