MultiGPrompt for Multi-Task Pre-Training and Prompting on Graphs

计算机科学 杠杆(统计) 借口 机器学习 人工智能 图形 利用 理论计算机科学 计算机安全 政治学 政治 法学
作者
Xingtong Yu,Chang Zhou,Yuan Fang,Xinming Zhang
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2312.03731
摘要

Graphs can inherently model interconnected objects on the Web, thereby facilitating a series of Web applications, such as web analyzing and content recommendation. Recently, Graph Neural Networks (GNNs) have emerged as a mainstream technique for graph representation learning. However, their efficacy within an end-to-end supervised framework is significantly tied to the availabilityof task-specific labels. To mitigate labeling costs and enhance robustness in few-shot settings, pre-training on self-supervised tasks has emerged as a promising method, while prompting has been proposed to further narrow the objective gap between pretext and downstream tasks. Although there has been some initial exploration of prompt-based learning on graphs, they primarily leverage a single pretext task, resulting in a limited subset of general knowledge that could be learned from the pre-training data. Hence, in this paper, we propose MultiGPrompt, a novel multi-task pre-training and prompting framework to exploit multiple pretext tasks for more comprehensive pre-trained knowledge. First, in pre-training, we design a set of pretext tokens to synergize multiple pretext tasks. Second, we propose a dual-prompt mechanism consisting of composed and open prompts to leverage task-specific and global pre-training knowledge, to guide downstream tasks in few-shot settings. Finally, we conduct extensive experiments on six public datasets to evaluate and analyze MultiGPrompt.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助小羊烧鸡采纳,获得10
刚刚
无名应助科研通管家采纳,获得10
刚刚
宋呵呵应助科研通管家采纳,获得10
刚刚
Return应助科研通管家采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
HOAN应助科研通管家采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得30
2秒前
婵婵完成签到,获得积分10
2秒前
2秒前
2秒前
老福贵儿应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得30
2秒前
自由白凡完成签到,获得积分10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
3秒前
打打应助科研通管家采纳,获得10
3秒前
田様应助ninomae采纳,获得10
3秒前
3秒前
雍雍完成签到 ,获得积分10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
纸万完成签到,获得积分10
6秒前
如意修洁完成签到 ,获得积分20
6秒前
6秒前
香蕉觅云应助浮浮世世采纳,获得10
7秒前
欣慰的小甜瓜完成签到 ,获得积分10
7秒前
8秒前
脑洞疼应助小蘑菇采纳,获得10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694691
求助须知:如何正确求助?哪些是违规求助? 5098273
关于积分的说明 15214299
捐赠科研通 4851210
什么是DOI,文献DOI怎么找? 2602193
邀请新用户注册赠送积分活动 1554073
关于科研通互助平台的介绍 1511978