CSFwinformer: Cross-Space-Frequency Window Transformer for Mirror Detection

人工智能 窗口(计算) 变压器 计算机科学 计算机视觉 电压 物理 操作系统 量子力学
作者
Zhifeng Xie,Sen Wang,Qiucheng Yu,Xin Tan,Yuan Xie
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 1853-1867 被引量:3
标识
DOI:10.1109/tip.2024.3372468
摘要

Mirror detection is a challenging task since mirrors do not possess a consistent visual appearance. Even the Segment Anything Model (SAM), which boasts superior zero-shot performance, cannot accurately detect the position of mirrors. Existing methods determine the position of the mirror under hypothetical conditions, such as the correspondence between objects inside and outside the mirror, and the semantic association between the mirror and surrounding objects. However, these assumptions do not apply to all scenarios. For instance, there may be no corresponding real objects to the reflected objects in the scene, or it may be challenging to extract meaningful semantic associations in complex scenes. On the other hand, humans can easily recognize mirrors through the specular texture caused by materials. To mine mirror features in more general scenes, we propose a Cross-Space-Frequency Window Transformer (CSFwinformer) to extract spatial and frequency features for texture analysis. Specifically, we design a Spatial-Frequency Window Alignment module (SFWA) to calculate spatial-frequency feature affinities and learn the difference between mirror and non-mirror textures. We then propose a Dilated Window Attention (DWA) to extract global features to complement the limitation of window alignment. Besides, we propose a Cross-Modality Context Contrast module (CMCC) to fuse cross-modality features and global features, which enables information flow between different windows to take full advantage of cross-modality information. Extensive experiments show that our method performs favorably against state-of-the-art methods on three mirror detection benchmarks and significantly improved SAM performance on mirror detection. The code is available at https://github.com/wangsen99/CSFwinformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
笨笨中心发布了新的文献求助10
2秒前
lijieyuan发布了新的文献求助10
2秒前
6秒前
云鹏完成签到,获得积分10
6秒前
追寻冰淇淋应助morgenlefay采纳,获得10
7秒前
8989完成签到,获得积分10
8秒前
lijieyuan完成签到,获得积分10
8秒前
8秒前
10秒前
11秒前
CipherSage应助洋洋采纳,获得10
12秒前
文静千凡发布了新的文献求助10
13秒前
13秒前
打打应助mmm采纳,获得10
16秒前
奋斗的绝悟完成签到 ,获得积分10
17秒前
18秒前
渣渣XM完成签到,获得积分10
19秒前
DamonFri完成签到,获得积分10
19秒前
要减肥安南完成签到,获得积分10
20秒前
UPUP0707完成签到,获得积分10
20秒前
jnfy发布了新的文献求助10
21秒前
21秒前
舒畅完成签到,获得积分10
23秒前
25秒前
25秒前
大真人发布了新的文献求助10
26秒前
科研通AI2S应助可爱的柜子采纳,获得10
26秒前
CodeCraft应助suansuan采纳,获得10
26秒前
健忘的沛蓝完成签到 ,获得积分10
26秒前
27秒前
28秒前
文城完成签到 ,获得积分10
28秒前
why完成签到,获得积分10
28秒前
额威风完成签到,获得积分10
28秒前
blue发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
29秒前
zrc完成签到 ,获得积分10
30秒前
31秒前
淀粉肠发布了新的文献求助10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952525
求助须知:如何正确求助?哪些是违规求助? 3497889
关于积分的说明 11089301
捐赠科研通 3228428
什么是DOI,文献DOI怎么找? 1784906
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309