Review on Electric Resistance in Proton Exchange Membrane Fuel Cells: Advances and Outlook

夹紧 质子交换膜燃料电池 接触电阻 燃料电池 电场 电压 机械工程 材料科学 化学工程 纳米技术 工程类 电气工程 物理 图层(电子) 量子力学
作者
Jiatang Wang,Huawei He,Yu Wu,Chao Yang,Houcheng Zhang,Quan Zhang,Jing Li,Hansong Cheng,Weiwei Cai
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:38 (4): 2759-2776 被引量:6
标识
DOI:10.1021/acs.energyfuels.3c04556
摘要

Improving fuel efficiency and performance in proton exchange membrane fuel cells is closely linked to reducing electric resistance. This review discusses the vital role, behavior, and methods to reduce electric resistance in fuel cells. We particularly focus on how electric resistance affects cell polarization loss and overall performance. We summarize key parameters, prediction formulas, standard values, and testing methods for both bulk resistance and contact resistance. A significant part of the review looks at often-overlooked factors like flow field design, clamping pressure, surface properties, and substrate material. The unique "channel/rib" design on the bipolar plates surface has a major impact on electric resistance. Research shows a balance between rib/channel ratios, clamping pressure, and resistance values. While narrower ratios help reduce contact resistance, they can increase bulk resistance and overall cell resistance, affecting voltage outputs. There's an ideal clamping pressure that offers the best balance between resistance and performance. Further, this review underscores the significance of material selection, flow field design, clamping pressure, and surface treatments in resistance management. Designs like serpentine flow fields and materials such as carbon paper are noted for their lower resistance characteristics. Synthesizing these insights, we propose coherent strategies to enhance cell performance by reducing electric resistance through improved fuel cell design. Conclusively, we analyze the challenges and future perspectives in achieving minimal electric resistance and maximal cell performance. Potential avenues for future research are identified, with an emphasis on nanomaterials, advanced fabrication techniques, experimental methodologies, numerical modeling, flow field design, and operational optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yang发布了新的文献求助10
2秒前
米粒之珠亦放光华完成签到,获得积分20
3秒前
丰富的热狗完成签到,获得积分10
3秒前
3秒前
yakami完成签到,获得积分20
3秒前
猪猪hero应助科研通管家采纳,获得10
3秒前
cdercder应助科研通管家采纳,获得20
3秒前
猪猪hero应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
菠萝吹雪应助科研通管家采纳,获得30
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
可爱的函函应助科研通管家采纳,获得100
4秒前
4秒前
4秒前
4秒前
Ammon完成签到,获得积分10
5秒前
dungaway完成签到,获得积分10
5秒前
6秒前
我最爱读文献了完成签到,获得积分20
7秒前
Leo发布了新的文献求助10
7秒前
雪芜发布了新的文献求助30
8秒前
大力翠丝发布了新的文献求助10
9秒前
10秒前
Zhu发布了新的文献求助20
10秒前
JamesPei应助满增明采纳,获得10
10秒前
10秒前
彭于晏应助张怡采纳,获得30
12秒前
传奇3应助小仙女212采纳,获得10
12秒前
16秒前
16秒前
16秒前
October发布了新的文献求助10
16秒前
乐乐发布了新的文献求助10
17秒前
星辰大海应助zhanyuji采纳,获得10
18秒前
alooof发布了新的文献求助30
21秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416294
求助须知:如何正确求助?哪些是违规求助? 3018217
关于积分的说明 8883350
捐赠科研通 2705583
什么是DOI,文献DOI怎么找? 1483717
科研通“疑难数据库(出版商)”最低求助积分说明 685787
邀请新用户注册赠送积分活动 680931