A first-principles study on stabilizing disordered LiNi0.5Mn1.5O4 cathode material by doping

兴奋剂 阴极 材料科学 结晶学 凝聚态物理 工程物理 化学工程 纳米技术 化学 物理化学 物理 光电子学 工程类
作者
Che‐an Lin,Shih‐kang Lin
出处
期刊:Journal of energy storage [Elsevier]
卷期号:83: 110637-110637 被引量:2
标识
DOI:10.1016/j.est.2024.110637
摘要

High-voltage LiNi0.5Mn1.5O4 (LNMO) is a promising cathode material for high energy-density Li-ion batteries. The LNMO phase exhibits either ordered or disordered structure; meanwhile, the Mn ions possess 3+ and 4+ mixed valence states. The main challenges of LNMO cathode material for real applications are that the ordered LNMO phase possesses poor rate capability and that the Mn3+/4+ redox reaction leads to Mn dissolution. Doping has been a straightforward approach to address these issues, by enhancing the stability of the disordered LNMO phase and reducing the Mn3+ fraction in LNMO. However, experimental trials involved different setups and uncertainties, which usually cannot be directly compared, and thus an investigation of doping influence on disordered LNMO based on fair comparison is required. Herein, we screened and proposed the best dopants that can improve LNMO performance, and we clarified the corresponding mechanism based on first-principles calculations and thermodynamics. The stable doping systems and preferred doping sites were obtained through phase stability evaluation. Mechanism of disordered LNMO stabilization was obtained through analyzing the relation between the change of transition metal valence states after doping and the ability of dopants to stabilize disordered LNMO. It was found that not only extra-electron dopants stabilize disordered LNMO, as most of the studies reported, but extra-hole dopants could also stabilize disordered LNMO. Furthermore, considering the Mn3+/4+ redox reaction, extra-hole dopants, including Mg, Na, and Zn, were suggested to be the dopants that could improve LNMO performance with simultaneously increasing the fraction of disordered phase and avoiding Mn3+/4+ redox reaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
柠檬完成签到,获得积分10
刚刚
可靠的书桃应助dai采纳,获得10
刚刚
1秒前
1秒前
老单发布了新的文献求助10
2秒前
2秒前
3秒前
赘婿应助轩海采纳,获得30
4秒前
栗子完成签到,获得积分10
5秒前
5秒前
6秒前
德克医生发布了新的文献求助10
7秒前
11111发布了新的文献求助10
7秒前
Ellery发布了新的文献求助50
7秒前
9秒前
斯文墨镜发布了新的文献求助10
9秒前
等乙天发布了新的文献求助30
10秒前
淡淡听枫发布了新的文献求助10
10秒前
16秒前
所所应助xiaozhang采纳,获得10
16秒前
zxz发布了新的文献求助10
16秒前
17秒前
杨盖发布了新的文献求助10
17秒前
18秒前
跳跃野狼发布了新的文献求助10
19秒前
20秒前
Ellery完成签到,获得积分10
22秒前
22秒前
wu发布了新的文献求助10
24秒前
24秒前
喜欢发布了新的文献求助10
25秒前
26秒前
27秒前
wen发布了新的文献求助10
27秒前
跳跃野狼发布了新的文献求助10
30秒前
32秒前
搜集达人应助wen采纳,获得10
34秒前
SciGPT应助小机灵采纳,获得10
34秒前
小香香完成签到 ,获得积分10
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136624
求助须知:如何正确求助?哪些是违规求助? 2787645
关于积分的说明 7782625
捐赠科研通 2443718
什么是DOI,文献DOI怎么找? 1299386
科研通“疑难数据库(出版商)”最低求助积分说明 625429
版权声明 600954