过电位
法拉第效率
阳极
阴极
水溶液
电镀(地质)
材料科学
氧化还原
电子
电池(电)
剥离(纤维)
金属
电化学
化学工程
化学
物理化学
冶金
热力学
电极
物理
复合材料
地球物理学
功率(物理)
工程类
量子力学
作者
J. Wang,Sofia K. Catalina,Zhelong Jiang,Xin Xu,Qin Tracy Zhou,William C. Chueh,J. Tyler Mefford
标识
DOI:10.26434/chemrxiv-2024-475km
摘要
Sn is a promising metal anode for aqueous batteries due to its dendrite-free plating, large hydrogen evolution overpotential, and high theoretical capacity with up to four-electron redox per Sn atom. However, practically achieving the theoretical capacity for Sn remains challenging, with only limited cell energy densities demonstrated thus far. We validate a kinetically asymmetric [Sn(OH)6]2-/Sn redox pathway involving a direct four-electron plating and a stepwise 2+2 electron stripping through a [Sn(OH)3]- intermediate, which decreases the Coulombic efficiency (CE) by shuttling to the cathode and promoting chemical self-discharge. By using ion-selective membranes to suppress [Sn(OH)3]- crossover, we demonstrate Sn-Ni full cells with high round-trip efficiency (~80%) and energy density (143.1 Wh L-1). The results provide key understandings to the tradeoffs in engineering reversible multi-electron metal anodes and define a new benchmark for practical energy density that exceeds Sn-based aqueous batteries to date.
科研通智能强力驱动
Strongly Powered by AbleSci AI