Seepage prediction model of the earth-rock dam based on TCN considering rainfall lag effect

滞后 滞后时间 时滞 土(古典元素) 地质学 环境科学 水文学(农业) 岩土工程 气象学 计算机科学 数学 地理 生物系统 计算机网络 数学物理 生物
作者
Manli Qu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (6): 066116-066116 被引量:2
标识
DOI:10.1088/1361-6501/ad2e68
摘要

Abstract Renewable energy has the highest conversion efficiency, is the most flexible in regulating peak power in the grid, and has the potential to significantly reduce emissions. Hydropower is one of the main ways to optimize power energy structure by building earth-rock dams that block water and generate electricity. Seepage is a physical quantity that characterizes the safety of earth-rock dams. Studying the intelligent prediction model of earth-rock dams is an effective means of understanding the evolution of seepage behavior, and it is also crucial for the safe operation and energy efficiency of earth-rock dams. To create a rainfall factor expression reflecting the hysteresis effect of rain, actual monitoring data of different piezoelectric tubes on the upstream and downstream sides of the soil core wall of an earth-rock dam is considered. Based on the key influencing factors of the seepage behavior of earth-rock dams, the novel temporal convolutional network (TCN) algorithm in deep learning is introduced into the seepage behavior prediction of earth-rock dams, constructing the intelligent prediction model of seepage of earth-rock dams based on TCN. The engineering example shows that the seepage prediction model of the earth-rock dam based on TCN has better prediction performance than the seepage prediction model of the earth-rock dam based on support vector regression (SVR), extreme learning machine, and long-short term memory. The determination coefficient is more significant than 0.9, and the relative error of prediction is less than 1‰. The model’s prediction accuracy is high, and the stability of the prediction performance is good. The model’s prediction performance also improves after considering the rainfall lag effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助背后城采纳,获得10
刚刚
Theone发布了新的文献求助10
刚刚
刚刚
小九九发布了新的文献求助10
刚刚
8R60d8应助风中的听白采纳,获得10
刚刚
机智张发布了新的文献求助10
2秒前
自信秋烟完成签到 ,获得积分10
2秒前
安和桥北完成签到 ,获得积分10
3秒前
蓝璃发布了新的文献求助10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
顾矜应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
ding应助科研小霸王采纳,获得10
5秒前
5秒前
5秒前
5秒前
大个应助科研通管家采纳,获得10
5秒前
5秒前
小蘑菇应助lisa采纳,获得10
5秒前
NexusExplorer应助孤独孤风采纳,获得10
5秒前
吃鸡蛋不吃鸡蛋黄完成签到,获得积分10
6秒前
6秒前
zhouzhou打工人完成签到,获得积分10
6秒前
6秒前
西四完成签到,获得积分10
6秒前
7秒前
7秒前
508完成签到,获得积分20
8秒前
8秒前
8秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3169616
求助须知:如何正确求助?哪些是违规求助? 2820792
关于积分的说明 7932194
捐赠科研通 2481126
什么是DOI,文献DOI怎么找? 1321678
科研通“疑难数据库(出版商)”最低求助积分说明 633317
版权声明 602541