Superfast Phase Transformation Driven by Dual Chemical Equilibrium Enabling Enhanced Electrochemical Energy Storage

材料科学 阴极 电化学 储能 溶解 聚吡咯 相(物质) 插层(化学) 纳米技术 单斜晶系 聚合 热力学 化学工程 无机化学 聚合物 物理化学 结晶学 电极 晶体结构 复合材料 有机化学 功率(物理) 化学 冶金 工程类 物理
作者
Pengfei Dai,Wen-Long Ma,Yiming Zhou,Yawen Tang,Xin Cao,Ping Wu,Haoshen Zhou
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (22) 被引量:7
标识
DOI:10.1002/adfm.202308357
摘要

Abstract Phase transformation engineering provides new synthetic opportunities and pathways toward functional materials with desirable phases and structures. However, current phase transformation processes are generally time‐consuming or low‐yielding due to the lack of favorable driving forces. Herein, a superfast and scalable phase transformation technique driven by dual chemical equilibrium is developed. Taking manganese hexacyanoferrate (MnHCF) as an example, precipitation–dissolution and oxidation‐reduction dual chemical equilibrium co‐drive the superfast phase transformation from cubic KMnFe(CN) 6 (C‐MnHCF) to monoclinic K 2 MnFe(CN) 6 (M‐MnHCF) and simultaneously oxidative polymerization of polypyrrole (PPy), enabling the formation of homogeneous M‐MnHCF/PPy hybrid materials. For electrochemical energy storage, the uniform hybridization of PPy improves the electrical conductivity, restrains the dissolution of Mn, and more importantly, promotes K + ‐intercalation kinetics of the K‐intercalated MnHCF‐based cathodes with a K + /Na + competing insertion/extraction mechanism. As a result, the M‐MnHCF/PPy hybrid cathode manifests enhanced structural integrity and charge‐transport capability and thus long‐term cyclic life (114.8 mAh g −1 after 200 cycles at 0.1 A g −1 ) and high rate performance (113.3 and 92.7 mAh g −1 at 0.5 and 1 A g −1 , respectively).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
倩倩发布了新的文献求助10
1秒前
受伤鸡发布了新的文献求助10
2秒前
坚果完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
jesmblaq发布了新的文献求助10
3秒前
AAngelica完成签到,获得积分10
3秒前
ElviraHuang完成签到 ,获得积分10
5秒前
5秒前
李昕123发布了新的文献求助10
7秒前
7秒前
8秒前
Canyon完成签到,获得积分10
9秒前
刘l完成签到,获得积分10
9秒前
9699完成签到,获得积分20
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
破碎时间完成签到 ,获得积分10
11秒前
11秒前
11秒前
orixero应助忐忑的不可采纳,获得10
12秒前
科研通AI2S应助zhouyan采纳,获得10
12秒前
13秒前
蔡勇强发布了新的文献求助10
13秒前
小虫虫完成签到,获得积分10
13秒前
饼饼大王完成签到,获得积分10
13秒前
13013523252完成签到,获得积分10
13秒前
15秒前
hy发布了新的文献求助10
15秒前
科研通AI6应助tph采纳,获得10
16秒前
jesmblaq完成签到,获得积分10
17秒前
文静的夜阑完成签到,获得积分20
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
苹果有毒发布了新的文献求助10
18秒前
小石头完成签到,获得积分10
20秒前
21秒前
13013523252发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812