Gas-particle partitioning process contributes more to nitrate dominated air pollution than oxidation process in northern China

硝酸盐 气溶胶 微粒 污染 环境化学 化学 粒子(生态学) 空气污染 环境科学 环境工程 生态学 生物 有机化学
作者
Xiao Tian,Haofei Yu,Yuting Wei,Zongbo Shi,Yinchang Feng,Linlin Zhang,Guoliang Shi
出处
期刊:Aerosol Science and Technology [Informa]
卷期号:58 (2): 181-194
标识
DOI:10.1080/02786826.2023.2294944
摘要

Nitrate has been recognized as a key aerosol component in regional haze formation in China. However, reducing nitrate aerosol concentration remains a major challenge. Generally, the formation of particulate nitrate (NO3-) is mainly affected by two processes: oxidation (to generate gaseous HNO3 or particulate NO3-) and gas-particle partitioning (HNO3-NO3- partition). Here, we proposed a new method to explore the contributions of above two processes (COxiobs (%) and CG/Pobs (%)) to nitrate formation based on field observation, and combined theoretical calculation and modeling to verify it. Quantitative results showed that gas-particle partitioning process (average CG/Pobs (%) was 64.90%) always contributed more than oxidation process (average COxiobs (%) was 35.10%) for particulate nitrate formation under different pollution scenarios in the ambient environment. We argued that this phenomenon was mainly caused by high aerosol pH (>4.5). Nevertheless, as pollution level rose, the COxiobs (%) will also increase (contributing to 32%, 38%, 40% and 41% under clean, light, medium and heavy pollution levels) which may be attributed to the increased HNO3 production rate and relatively enhanced heterogeneous reaction pathway. The results indicate future strategies for prevention and control of nitrate pollution should both consider reducing precursors emission and regulating aerosol acidity, in order to increase the effectiveness of reducing nitrate dominated pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵赵完成签到,获得积分10
刚刚
共享精神应助lalala采纳,获得10
刚刚
Hello应助hf采纳,获得10
刚刚
刚刚
豆丁完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
鹿友菌完成签到,获得积分10
3秒前
皮克斯完成签到 ,获得积分10
3秒前
黑米粥发布了新的文献求助10
3秒前
iu完成签到,获得积分10
3秒前
脑洞疼应助KX采纳,获得10
3秒前
大模型应助艺玲采纳,获得10
4秒前
ZXD完成签到,获得积分10
4秒前
4秒前
丞诺完成签到,获得积分10
4秒前
Ricardo完成签到,获得积分10
5秒前
深情安青应助孔雀翎采纳,获得10
5秒前
6秒前
6秒前
端庄的萝完成签到,获得积分10
6秒前
平淡南霜完成签到,获得积分10
6秒前
李健的粉丝团团长应助ppbb采纳,获得10
6秒前
Mr_Hao发布了新的文献求助20
7秒前
fff发布了新的文献求助10
7秒前
7秒前
CC发布了新的文献求助10
8秒前
eee发布了新的文献求助20
8秒前
HEIKU应助xinxinqi采纳,获得10
9秒前
keroro完成签到,获得积分10
9秒前
研友_VZG7GZ应助宋嬴一采纳,获得10
9秒前
祯果粒完成签到,获得积分10
9秒前
9秒前
王大炮完成签到 ,获得积分10
9秒前
不厌完成签到,获得积分10
10秒前
feifei关注了科研通微信公众号
10秒前
11秒前
香菜完成签到,获得积分20
11秒前
鲸是海蓝色完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672