微分脉冲伏安法
循环伏安法
纳米技术
化学
分子印迹
聚噻吩
检出限
材料科学
电极
电化学
色谱法
选择性
导电聚合物
催化作用
有机化学
物理化学
作者
Maleeha Saeed,Zohaib Saddique,Adnan Mujahid,Adeel Afzal
标识
DOI:10.1016/j.bios.2023.115899
摘要
The growing risk of death associated with kidney dysfunction underlines the requirement for a cost-effective and precise point-of-care (POC) diagnostic tool to identify chronic kidney disease (CKD) at an early stage. This work reports the development of a non-invasive POC diagnostic based on cost-efficient, disposable electrodes and in situ-designed biomimetic nanozymes. The nanozymes are composed of graphitic carbon nitride nanosheets (gCN) and creatinine-imprinted polythiophene nanofibers (miPTh). Microscopic analyses reveal porous nanofibrous surface morphology of biomimetic miPTh/gCN nanozymes. Bulk imprinting and the inclusion of conductive gCN nanosheets drastically reduced the charge transfer resistance and improved the electron exchange kinetics at the nanozyme-electrolyte interface. The electrochemical oxidation of creatinine is studied via cyclic voltammetry (CV), and differential pulse voltammetry (DPV), which exhibit excellent creatinine recognition ability of biomimetic miPTh/gCN nanozyme sensors compared to pristine polymeric or non-imprinted nanozymes. The sensor reveals linear response toward 200–1000 nmol L−1 creatinine, high sensitivity (4.27 μA cm−2 nmol−1 L), sub-nanomolar detection limit (340 pmol L−1), and excellent selectivity over common salivary analytes. To corroborate its real-world utility, the miPTh/gCN nanozyme sensor shows an impressive 94.8% recovery of spiked creatinine concentrations in microliter droplets of human saliva samples. This disposable sensor reveals great potential in the realm of reliable and efficient non-invasive POC diagnostics for healthcare delivery.
科研通智能强力驱动
Strongly Powered by AbleSci AI