Inorganic salt-assisted hydrothermal synthesis of composite vanadium oxides for stabilization of aqueous zinc ion batteries with low current density cycling

水溶液 化学工程 阴极 电化学 氧化钒 材料科学 热液循环 水热合成 无机化学 复合数 盐(化学) 化学 电极 冶金 复合材料 有机化学 物理化学 工程类
作者
Peng Luo,Dan Li,Junyao Long,Shiyao Nie,Xiaolan Chen,Zhaohui Li,Gangtie Lei
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:479: 147727-147727 被引量:5
标识
DOI:10.1016/j.cej.2023.147727
摘要

Vanadium-based materials have been widely investigated as cathode materials for aqueous zinc-ion batteries because of their multiple valences, large interlayer spacing and open framework. However, their sluggish reaction kinetics, poor structural stability and cycling stability at low rates still limit their further development. At present, the improvement of vanadium-based materials mostly involves complex processes or expensive materials that are difficult to synthesize on a large scale. In this work, by introducing an inorganic salt (NH4)2HPO4 as an additive and adjusting the reaction temperature of hydrothermal synthesis, a composite vanadium oxide (NVO(2 1 0)-2P) with the coexistence of NH4V4O10 and V5O12·6H2O was successfully synthesized. Compared with the surfactant-assisted process, the inorganic salt-assisted hydrothermal synthesis has the advantages of being greener and more environmentally friendly. As a cathode material for aqueous zinc ion batteries, the obtained NVO(2 1 0)-2P shows excellent cycle stability at low current density (88.1 % retention over 250 cycles at 0.3 A/g and 80 % after 600 cycles at 0.5 A/g). The excellent electrochemical performance is attributed to the well-structured nanosheets synthesized using (NH4)2HPO4 as an additive. At the same time, the generated V5O12·6H2O provides a large interlayer distance, reduces the structural water molecules of electrostatic interaction and indirectly forms a heterogeneous layered structure with NH4V4O10, which reduces the distribution density of NH4+ and avoids irreversible deamination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼咬羊发布了新的文献求助10
刚刚
wshiyu完成签到 ,获得积分10
1秒前
YY发布了新的文献求助10
1秒前
2秒前
ZCY完成签到,获得积分10
2秒前
2秒前
shiqi1108完成签到 ,获得积分10
3秒前
czlianjoy完成签到,获得积分10
3秒前
3秒前
zhangxr完成签到 ,获得积分10
4秒前
这样23发布了新的文献求助10
4秒前
5秒前
欣慰小蕊完成签到,获得积分10
5秒前
wangyi完成签到,获得积分10
6秒前
左左完成签到 ,获得积分10
6秒前
鸿鹄在天涯完成签到 ,获得积分10
7秒前
怕黑的音响完成签到 ,获得积分10
7秒前
7秒前
舒窈完成签到 ,获得积分10
7秒前
YY完成签到,获得积分10
8秒前
令狐稀发布了新的文献求助10
8秒前
严美娜发布了新的文献求助10
8秒前
汪姝完成签到,获得积分10
8秒前
9秒前
燕儿完成签到,获得积分10
9秒前
9秒前
23发布了新的文献求助10
10秒前
开心夏天完成签到,获得积分10
10秒前
CWC完成签到,获得积分10
10秒前
妮子要学习完成签到,获得积分10
11秒前
April完成签到,获得积分10
11秒前
云魂完成签到,获得积分10
11秒前
代扁扁完成签到 ,获得积分10
12秒前
烈阳完成签到,获得积分10
12秒前
机智灵薇完成签到,获得积分10
13秒前
乐乐应助耳朵儿歌采纳,获得10
13秒前
冰儿菲菲完成签到,获得积分10
13秒前
123应助zyfqpc采纳,获得30
13秒前
hehehe完成签到,获得积分10
13秒前
大力黑猫完成签到,获得积分10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Textbook of Interventional Radiology 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294808
求助须知:如何正确求助?哪些是违规求助? 2930708
关于积分的说明 8447504
捐赠科研通 2603031
什么是DOI,文献DOI怎么找? 1420842
科研通“疑难数据库(出版商)”最低求助积分说明 660682
邀请新用户注册赠送积分活动 643531