Modality Conversion Meets Super-Resolution: A Collaborative Framework for High-Resolution Thermal UAV Image Generation

计算机科学 计算机视觉 人工智能 特征(语言学) 图像分辨率 任务(项目管理) 模态(人机交互) 图像融合 图像(数学) 遥感 工程类 哲学 语言学 系统工程 地质学
作者
Zhicheng Zhao,C. Wang,Chenglong Li,Yong Zhang,Jin Tang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:1
标识
DOI:10.1109/tgrs.2024.3354878
摘要

Due to the limitations and costs of thermal sensors, unmanned aerial vehicle (UAV) platforms often equip with high-resolution (HR) visible imaging and low-resolution (LR) thermal imaging cameras for all-day monitoring capability. Existing works generate the high-resolution thermal UAV images by either super-resolution (SR) from high-resolution visible and low-resolution thermal images or modality conversion (MC) from high-resolution visible images. However, the modality gap between visible and thermal sources might degrade the generation quality. We observe that the MC task is beneficial in addressing the cross-modal gap in the SR task, while the SR task can provide the condition of thermal information to boost the MC task. Moreover, these two tasks have the same output and can thus be carried out simultaneously without any additional annotation. Based on this observation, we propose a collaborative enhancement network (CENet), which performs thermal UAV image SR and visible image MC in a joint manner, for high-resolution thermal UAV image generation. In particular, we design a mutual guidance module to interact the features from SR and MC tasks in an alternating bidirectional manner. Considering that low-level vision tasks are position-sensitive, to further enhance the feature alignment between the two tasks, we design a bidirectional alignment fusion module to maintain feature consistency of the MC and SR branches. The proposed collaborative framework not only achieves joint and unified training of the two tasks, but also generates two types of complementary high-resolution images. Extensive experiments on public datasets demonstrate that the proposed CENet outperforms current state-of-the-art super-resolution (SR) methods in generating high-resolution thermal UAV images, as quantified by peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rena发布了新的文献求助10
1秒前
颜倾关注了科研通微信公众号
1秒前
Rita发布了新的文献求助10
1秒前
Chem发布了新的文献求助10
1秒前
满意的柜子完成签到,获得积分10
1秒前
MEMSforever发布了新的文献求助50
2秒前
Tessa完成签到,获得积分10
3秒前
VDC应助紧张的惜寒采纳,获得30
4秒前
张张完成签到,获得积分20
5秒前
ouiiiblue完成签到,获得积分10
5秒前
聪慧的栾完成签到,获得积分10
5秒前
酷炫大白完成签到,获得积分10
6秒前
科研通AI5应助LHL采纳,获得10
6秒前
7秒前
正直自行车完成签到,获得积分10
7秒前
Akim应助zyy采纳,获得10
7秒前
8秒前
张秋实发布了新的文献求助10
8秒前
8秒前
9秒前
深情安青应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
斯文败类应助wax采纳,获得30
10秒前
11秒前
ziming313发布了新的文献求助10
12秒前
JamesPei应助aoxiangcaizi12采纳,获得10
12秒前
xinyue发布了新的文献求助10
12秒前
一星如月完成签到,获得积分10
13秒前
13秒前
hersy完成签到,获得积分10
14秒前
副总完成签到,获得积分10
14秒前
梦城发布了新的文献求助10
15秒前
七七完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542861
求助须知:如何正确求助?哪些是违规求助? 3120134
关于积分的说明 9341680
捐赠科研通 2818200
什么是DOI,文献DOI怎么找? 1549414
邀请新用户注册赠送积分活动 722131
科研通“疑难数据库(出版商)”最低求助积分说明 712978